LEVIN ENTERPRISES, INC. LEVIN RICHMOND TERMINAL CORP.

402 Wright Avenue Richmond, CA 94804 Telephone: (510) 232-4422

September 11, 2015

Ms. Rachelle Thompson United States Environmental Protection Agency Region 9 75 Hawthorne Street San Francisco, California 94105

RE: 2014-2015 Annual Report for United Heckathorn Superfund Site

Upland Capping System Richmond, California

Dear Ms. Thompson:

Enclosed please find the 2014-2015 Annual Report for the United Heckathorn Superfund Site Upland Capping System presenting inspection, monitoring, and maintenance activities performed on the upland capping and drainage system at the United Heckathorn Superfund Site located at 402 Wright Avenue, Richmond, California. This report was prepared in accordance with the Revised Draft Operations and Maintenance Plan, Upland Capping System Former United Heckathorn Site.

Please feel free to contact me if you have any questions or concerns with the attached report.

Sincerely,

Gary Levin

Chief Executive Officer

(510) 307-4091

Attachment: 2014-2015 Annual Report for United Heckathorn Superfund Site Upland Capping System

2014-2015 ANNUAL REPORT FOR

UNITED HECKATHORN SUPERFUND SITE **UPLAND CAPPING SYSTEM** RICHMOND, CALIFORNIA

prepared for

Levin Richmond Terminal Corporation 402 Wright Avenue Richmond, California 94804

September 11, 2015

2200 Powell Street, Suite 925, Emeryville, CA 94608-1879 Fax: 510-547-5043 Phone: 510-450-6000

2014-2015 ANNUAL REPORT FOR

UNITED HECKATHORN SUPERFUND SITE **UPLAND CAPPING SYSTEM** RICHMOND, CALIFORNIA

prepared for:

Levin Richmond Terminal Corporation 402 Wright Avenue

Richmond, California 94804

prepared by:

Weiss Associates 2200 Powell Street, Suite 925

Emeryville, CA 94608

Weiss Job No. 426-2026.01 Task 2

Weiss Associates' work for the Levin Richmond Terminal Corporation was conducted under my supervision. To the best of my knowledge, the data contained herein are true and accurate, are based on what can be reasonably understood as a result of this project, and satisfy the scope of work prescribed by the client for this project. The data, findings, recommendations, specifications or professional opinions were prepared solely for the use of the Levin Richmond Terminal Corporation in accordance with generally accepted professional engineering and geologic practice. We make no other warranty, either expressed or implied, and are not responsible for the interpretation by others of the contents herein.

September 11, 2015

Scott Bourne, PE Principal

Date

CONTENTS

		Page
INTRO	ODUCTION	1
1.1	Background	1
1.2	Upland Cap Inspections	1
1.3	Contents of this Report	2
SITE I	DESCRIPTION	3
2.1	Upland Area Description and Current Use	3
2.2	Nearby Water Bodies	3
2.3	Upland Area Cap	3
2.4	Storm Water Collection System	3
CAPP	ING SYSTEM ACTIVITIES	5
3.1	Repair of Concrete Cap	5
3.2	Repair of Gravel Cover	5
3.3	Erosion Control	5
STOR	M WATER SYSTEM ACTIVITIES	6
4.1	Storm Water Sampling	6
	4.1.1 Sample Results	7
	4.1.2 Quality Assurance/Quality Control	8
	4.1.3 Assessment of Results	8
4.2	Storm Water Collection System Cleaning and Inspection	8
	4.2.1 SW-3 Inspection	9
	4.2.2 SW-6 Inspection	9
	4.2.3 SW-7 Inspection	9
	4.2.4 Waste Disposal	9
	1.1 1.2 1.3 SITE I 2.1 2.2 2.3 2.4 CAPP 3.1 3.2 3.3 STOR 4.1	1.2 Upland Cap Inspections 1.3 Contents of this Report SITE DESCRIPTION 2.1 Upland Area Description and Current Use 2.2 Nearby Water Bodies 2.3 Upland Area Cap 2.4 Storm Water Collection System CAPPING SYSTEM ACTIVITIES 3.1 Repair of Concrete Cap 3.2 Repair of Gravel Cover 3.3 Erosion Control STORM WATER SYSTEM ACTIVITIES 4.1 Storm Water Sampling 4.1.1 Sample Results 4.1.2 Quality Assurance/Quality Control 4.1.3 Assessment of Results 4.2 Storm Water Collection System Cleaning and Inspection 4.2.1 SW-3 Inspection 4.2.2 SW-6 Inspection 4.2.3 SW-7 Inspection

 $\label{lem:linear_prop_reconstruction} J: Levin Richmond \\ 02c_Heckathorn \\ O\&M \\ 03_Reporting \\ 2014-2015 \\ Annual \\ Report \\ 2014-2015 \\ Annual \\ Report_rev \\ 0. \\ docx \\ Description \\ 1.00 \\ 1.$

i

2014-2015 Annual Report United Heckathorn Superfund Site Upland Capping System Richmond, California Storm Water Collection System Repairs 10 4.3 5. ANNUAL SITE INSPECTION 11 5.1 Concrete Cap Inspection 11 5.2 **Gravel Cover Inspection** 12 5.3 Storm Water Collection System Inspection 12 6. PROPOSED SITE WORK FOR 2015-2016 13

14

15

7. CONCLUSIONS

8. REFERENCES

FIGURES

Figure 2. Site Layout

Figure 3. Upland Area Storm Water Collection System Inspection Results and Repairs

Figure 4. Upland Area Photo Locations and Maintenance Recommendations

TABLES

Table 1.	2014-2015	Annual St	orm Water	Sampling	Data for	Pesticides

Table 2. 2014-2015 Annual Storm Water Sampling Data for General Parameters and Metals

Table 3. Waste Characterization Sample Results

APPENDICES

Appendix A. Upland Capping System Inspection Photographs

Appendix B. 2014-2015 Annual Storm Water Monitoring Report

Appendix C. Storm Water Pesticide Concentration Trend Charts for DDT and Dieldrin

Appendix D. Upland Capping System Inspection Form

Upland Capping System Richmond, California

ACRONYMS

BMP best management practices

Calscience Environmental Laboratories

DDD dichlorodiphenyldichloroethane

DDE dichlorodiphenyldichloroethene

DDT dichlorodiphenyltrichloroethane

Heckathorn site or Site United Heckathorn Superfund Site

H&R Plumbing and Drain Cleaning, Inc.

IGP Storm Water Industrial General Permit

LRT Levin Richmond Terminal

LRTC Levin Richmond Terminal Corporation

msl mean sea level

NPDES National Pollutant Discharge Elimination System

O&M operations and maintenance

O&M Plan Revised Draft Operations and Maintenance Plan, Upland Capping

System, Former United Heckathorn Site

RCRA Resource Conservation and Recovery Act

ROD Record of Decision

Subtronic Subtronic Corporation

SWPPP Storm Water Pollution Prevention Plan

SWRCB State Water Resource Control Board

μg/L micrograms per liter

USEPA United States Environmental Protection Agency

Weiss Associates

1. INTRODUCTION

This 2014-2015 Annual Report was prepared to describe the inspection, monitoring, and maintenance activities performed on the upland capping and storm water drainage systems at the United Heckathorn Superfund Site (Heckathorn site or Site) located in the Richmond Harbor near the intersection of the Santa Fe Channel and Inner Harbor Channel (Figure 1). The Site is part of the Levin Richmond Terminal (LRT) and this report has been prepared by Weiss Associates (Weiss) under contract with the Levin Richmond Terminal Corporation (LRTC).

1.1 Background

From 1947 through 1966, the Heckathorn site was used for processing, packaging, and shipping of pesticides including aldrin, dieldrin, dichlorodiphenyltrichloroethane (DDT), and endrin. In 1994, the United States Environmental Protection Agency (USEPA) adopted a Record of Decision (ROD) for the Site which limits use of the property and required LRTC to design, construct, and maintain a concrete cap to prevent erosion of upland soils (USEPA, 1994b).

In 1996, LRTC entered into a Consent Decree with the USEPA, which outlined LRTC's responsibilities for long-term management of the upland capping system located on the northern half of the Main Terminal at the LRT (United States District Court, 1996). LRTC performs operations and maintenance (O&M) activities in accordance with the *Revised Draft Operations and Maintenance Plan, Upland Capping System, Former United Heckathorn Site* (O&M Plan; PES, 1999).

The Third Five-Year Review Report for United Heckathorn Superfund Site, Richmond, California (Third Five-Year Review; USEPA, 2011) included recommendations for additional best management practices (BMPs) to be included in the O&M Plan, including annual monitoring for cap cracking and settlement, establishing monitoring points on the cap for settlement monitoring, collecting sediment samples from the storm drain interceptors for pesticide analysis, and periodic video inspections of the underground drainage systems.

1.2 Upland Cap Inspections

In order to ensure long-term protection of human health and the environment, the remedial action goal established by the USEPA for upland and embankment soils is the prevention of erosion and transport into the Lauritzen Channel (USEPA, 1994a).

The objective of the cap inspection and storm water monitoring programs is to identify any potential release of pesticide-impacted soil by examining the integrity of the cap system through inspection and storm water monitoring (USEPA, 2011.)

1

1.3 Contents of this Report

ing sections describe activities to maintain the upland cap, including:
Capping system activities;
Storm water system activities;
Annual cap inspection; and
Proposed site work for 2015-2016.

A conclusion with Weiss's opinion as to the overall condition and effectiveness of the cap in meeting the upland cap remediation objective is also included.

2. SITE DESCRIPTION

The LRT is located at 402 Wright Avenue in Richmond, California (Figure 1). The Heckathorn site includes the northern five acres of the Main Terminal at the LRT, known as the Upland Area (Figure 2).

2.1 Upland Area Description and Current Use

The Upland Area is bounded by Cutting Boulevard and railroad tracks to the north; South Fourth Street, Wright Avenue, and Sims Metal Management to the east; the Santa Fe Channel to the south; and the Lauritzen Channel, Manson Construction Company, and an unoccupied industrial property to the west. The majority of the Upland Area is relatively flat with surface elevations of approximately 9 feet above mean sea level (msl). The portion of the Upland Area north of the Lauritzen Channel was raised to approximately 15 feet above msl.

The Upland Area is used primarily for storage of dry bulk product and railroad operations. Photographs taken during the site inspection are included in Appendix A.

2.2 Nearby Water Bodies

The storm water system in the Upland Area discharges directly to the Lauritzen Channel (Figure 2). The Lauritzen Channel is connected to the San Francisco Bay via the Santa Fe Channel and Richmond Inner Harbor.

2.3 Upland Area Cap

Construction of the concrete cap at the Upland Area began in July 1998 and was completed in July 1999. Installation of the cap consisted of: (1) site grading to promote surface runoff to collection points; (2) installation of a drainage system to collect surface runoff, including BMPs for storm water pollution prevention; and (3) construction of a reinforced concrete cap in the majority of the 5-acre area and construction of a geotextile fabric and gravel cap in the railroad track area. The concrete and gravel/geotextile cap areas were designed to protect against erosion of contaminated soils and subsequent flow into the channel associated with surface water runoff (USEPA, 2011).

2.4 Storm Water Collection System

The Upland Area storm water collection system (Figure 3) was installed in 1998 and is part of the larger storm water collection system at the LRT. The facility is paved with asphalt and concrete and is graded to direct surface water runoff via sheet flow or shallow swales to drop inlets.

The drop inlets drain to below-grade interceptors via underground pipe. Five storm water interceptors, SW-3 through SW-7, are located within the Upland Area storm water drainage system and receive storm water runoff. The wooden pier deck that extends over open water is not connected to the storm water drainage system.

Storm water interceptors SW-3 through SW-7 were constructed with compartments and steel baffles to allow the settling of sediments and separation of oil/grease and floatables, thereby decreasing the potential for outflow of these pollutants into the Lauritzen Channel. Interceptors SW-3 through SW-7 were constructed with a capacity to provide a five-minute retention time during a 10-year, 24-hour storm event (PES, 1999). Interceptors SW-3 through SW-7 are equipped with normally closed gate valves, which can be opened during heavy rains to enable discharge to the Lauritzen Channel.

Between 2009 and 2012, interceptor SW-3 was modified through the installation of two new pumps, valves, and piping to enable discharge to a 20,000-gallon nominal capacity rectangular tank for sediment settling. Storm water collected in the tank was discharged or reused on-site for dust suppression.

In 2014, pumps and piping were installed to convey storm water collected in the SW-4, SW-6, and SW-7 interceptors to interceptor SW-5. Pumps, piping, and a 20,000-gallon nominal capacity rectangular tank were then installed to facilitate additional sediment removal for the combined SW-4/-5/-6/-7 interceptors, prior to discharge or reuse on-site for dust suppression.

In 2015, piping was installed from interceptor SW-3 to the 20,000 gallon tank located near interceptor SW-5, and the 20,000 gallon tank near interceptor SW-3 was relocated to the SW-5 area. A storm water treatment system will be installed at the SW-5 discharge location in 2015 to prevent or reduce the discharge of pollutants in storm water from industrial activities. The system will treat storm water pumped from interceptors SW-3, SW-4, SW-5, SW-6, and SW-7 using flocculation, settling, and filtration methods. Treated storm water will be discharged to the Lauritzen Channel via the SW-5 outfall.

3. CAPPING SYSTEM ACTIVITIES

This section describes repair and routine O&M of the upland capping system performed during the 2014-2015 reporting year. No maintenance activities involving the disturbance of or excavation into underlying, impacted soil were conducted.

3.1 Repair of Concrete Cap

No maintenance or major repair involving replacement of portions of the concrete cap was conducted during the 2014-2015 reporting year.

3.2 Repair of Gravel Cover

Additional rock was placed on top of the existing gravel cover in the vicinity of interceptor SW-5 in July 2014 to ensure proper coverage.

No other major repair involving replacement of portions of the gravel cover was conducted during the 2014-2015 reporting year.

3.3 Erosion Control

No major erosion control work was performed during the 2014-2015 reporting year.

4. STORM WATER SYSTEM ACTIVITIES

This section describes the storm water collection system activities performed during the 2014-2015 reporting period. Activities included sampling of storm water, cleaning and inspection of all Heckathorn storm drain piping, and repairs of damaged piping associated with interceptors SW-3 and SW-5.

4.1 Storm Water Sampling

The O&M Plan (PES, 1999) requires storm water sampling to assess the effectiveness of the upland capping system. During the 2014-2015 reporting year, storm water discharges associated with industrial activities at the LRT were subject to the State Water Resources Control Board (SWRCB) Water Quality Order 97-03-DWQ for National Pollutant Discharge Elimination System (NPDES) General Permit No. CAS000001 (Waste Discharge Requirements for Discharges of Storm Water Associated with Industrial Activities excluding Construction Activities), also referred to as the Storm Water Industrial General Permit (1997 IGP; SWRCB, 1997). The O&M Plan expands the storm water monitoring requirements to include sampling for pesticides by USEPA Method 8081A in storm water discharges originating from the Upland Area (i.e., interceptors SW-3 through SW-7). Specifically, the O&M Plan requires samples to be collected at the outlet of each of the five interceptors. However, due to upgrades to storm water treatment at LRT, storm water collected at interceptors SW-4 through SW-7 was rerouted to a single sedimentation tank beginning in 2014 (as detailed in Section 2.4). Samples during the 2014-2015 reporting year were therefore collected from the SW-3 discharge and combined SW-4 through SW-7 discharges (SW-4/-5/-6/-7).

Storm water monitoring requirements for the 2014-2015 reporting year are documented in LRTC's *Storm Water Pollution Prevention Plan* (SWPPP; Weiss, 2014b), which details monitoring procedures to comply with the 1997 IGP and the O&M Plan. Sample collection during the 2014-2015 reporting year was performed as follows:

Sampling during four storm events producing discharges during the wet season (October through May);
Collecting samples from a storm preceded by at least three days of dry weather; and
Collecting samples during normal operating hours.

As of July 1, 2015, storm water discharges at LRT are regulated under the SWRCB Water Quality Order No. 2014-0057-DWQ, NPDES General Permit No. CAS000001 (2015 IGP), which is the successor permit to the 1997 IGP. Sample collection beginning in the 2015-2016 reporting year will be performed in conjunction with the 2015 IGP, revised LRT SWPPP (Weiss, 2015), and the O&M Plan.

4.1.1 Sample Results

During the 2014-2015 reporting year, storm water from the SW-3 and the combined SW-4/-5/-6/-7 discharge locations was sampled during three storm events, on November 20, December 2, and December 11, 2014. No discharge was produced at either location during the fourth storm event on February 6, 2015. Tables 1 and 2 provide the laboratory analytical results for pesticides and general parameters/metals, respectively. This Annual Report focuses on the evaluation of analytical results for pesticides.

Storm water samples were submitted to Eurofins CalScience Environmental Laboratories (Calscience) in Concord, California. Original laboratory reports, including applicable chain-of-custody forms, are included as part of the 2014-2015 Annual Storm Water Monitoring Report¹ provided in Appendix B.

Pesticides were detected in the November 20, 2014 storm water samples as follows: DDT was detected at a concentration of 0.022 micrograms per liter ($\mu g/L$) in the SW-4 through SW-7 discharge; Endosulfan I was detected at a concentration of 0.042 µg/L in the SW-4 through SW-7 discharge: Endrin was detected at a concentration of 0.012 µg/L in the SW-4 through SW-7 discharge; and Heptachlor was detected at a concentration of 0.016 µg/L in the SW-3 discharge. Pesticides were detected in the December 2, 2014 storm water samples as follows: DDT was detected at concentrations of 0.019 and 0.0035 µg/L in the SW-3 and SW-4 through SW-7 discharges, respectively. Dichlorodiphenyldichloroethene (DDE) was detected at a concentration of $0.014 \mu g/L$ in the SW-3 discharge. Dichlorodiphenyldichloroethane (DDD) was detected at a concentration of 0.0028 µg/L in the SW-3 discharge. Pesticides were detected in the December 11, 2014 storm water samples as follows: DDT was detected at concentrations of 0.039 and 0.0049 µg/L in the SW-3 and SW-4 through SW-7 discharges, respectively. DDD was detected at concentrations of 0.0023 and 0.0033 ug/L in the SW-3 П and SW-4 through SW-7 discharges, respectively. П Endosulfan I was detected at a concentration of 0.030 µg/L in the SW-3 discharge.

7

¹ Note that laboratory analytical reports include results from other sampling locations (i.e., TS1-E, SW-11, and SW-12) collected as part of the LRT Storm Water Monitoring Program for 2014-2015.

4.1.2 Quality Assurance/Quality Control

The O&M Plan (PES, 1999) requires at least one duplicate sample be collected per storm sampling event. During the 2014-2015 reporting year, duplicate samples were submitted from the November 20 and December 2, 2014 sampling events. During the December 11, 2014 sampling event a duplicate sample was submitted for a discharge location not associated with the Upland Cap area at LRT. No data quality issues were reported through the data validation process.

4.1.3 Assessment of Results

The pesticides detected in storm water samples collected during the 2014-2015 storm water season were consistent with historical concentrations. Appendix C provides concentration trend charts for DDT² and dieldrin from 2011 to present for SW-3, SW-4, SW-5, SW-6, SW-7, and the combined SW-4/-5/-6/-7 storm water discharges. DDT and dieldrin were selected for plotting because they have final remediation levels established in the ROD (USEPA, 1994b). The charts provide both detected concentrations and non-detect results.³ Prior to the 2013-2014 storm water season, the laboratory method detection limits for DDT and dieldrin were above the remediation goals and therefore the current trend charts provide limited information. Lower detection limits were instituted beginning in February 2014.

Annual storm water monitoring will continue in the 2015-2016 reporting year in accordance with the SWPPP and O&M Plan. Trend charts will be updated annually with new data.

4.2 Storm Water Collection System Cleaning and Inspection

The USEPA recommended in the Third Five-Year Review (USEPA, 2011) that LRTC perform periodic underground video inspections to verify the integrity of the underground storm water collection and discharge structures in the Upland cap area. LRTC cleaned and inspected the collection systems associated with interceptors SW-4 and SW-5 during the 2013-2014 reporting year as detailed in the 2013-2014 Annual Report (Weiss, 2014a). Through these inspections, a 2-foot long section of pipe leading to the SW-5 interceptor, between 9 and 11 feet west of catch basin 5D1-14A, was found to be deformed beneath the rail line and had large cracks along the bottom of the pipe.

On September 3 and 4, 2014, the remaining underground collection systems associated with interceptors SW-3, SW-6, and SW-7 were cleaned using a combination hydro-jet/vacuum truck and inspected with video equipment. LRTC contracted Subtronic Corporation (Subtronic) of Martinez, California to clean and perform video inspections on the storm water collection systems in September 2014. Material removed from the pipes included bulk product, sediments, and other debris. Wash water generated was decanted from the vacuum truck and reused on-site for dust suppression. Solids were tested and disposed off-site (see Section 4.2.4). Subtronic then inspected the storm drain lines; details of the inspection are provided below.

² Note that plotted DDT values are for the sum of the 4,4'- and 2,4'- isomers of DDT, DDD, and DDE.

³ Denoted by "< n", where n is the sum of the DDT, DDD, and DDE detection limits, if available, or reporting limit otherwise.

4.2.1 SW-3 Inspection

Subtronic accessed and inspected approximately 850 feet of piping in the SW-3 area on September 3 and 4, 2014. A rupture was discovered in the section of pipe spanning between drain inlets 3DI-6 and 3DI-7 (Figure 3). The rupture was located approximately 36 feet to the south of drain inlet 3DI-7 and consisted of a cross-sectional break along the top half of the pipe. Additionally, a sag in the pipe was observed approximately 10 feet to the north of drain inlet 3DI-5, between inlets 3DI-5 and 3DI-6, which did not appear to affect pipe integrity. The remaining pipes were observed to be clean and in good condition, with no cracking or deformation noted and all seams intact. No groundwater infiltration or inflow was observed.

4.2.2 SW-6 Inspection

Subtronic accessed and inspected approximately 200 feet of piping in the SW-6 area on September 4 and 5, 2014. The section of pipe between drain inlets 6DI-15 and 6DI-15A was observed to have a sag, approximately 65 feet from inlet 6DI-15 (Figure 3), which did not appear to affect pipe integrity. All other piping inspected in the SW-6 area was observed to be clean and in good condition, with no cracking or deformation noted and all seams intact. No groundwater infiltration or inflow was observed.

4.2.3 SW-7 Inspection

Subtronic accessed and inspected approximately 150 feet of piping leading to the SW-7 interceptor on September 3, 2014. All pipes were observed to be clean and in good condition, with no cracking or deformation noted and all seams intact. No groundwater infiltration or inflow was observed.

4.2.4 Waste Disposal

The cleaning and inspection activities in the Upland Cap area generated wash water and solid debris. The wash water was evaporated or reused on-site for dust suppression. Sediment collected from interceptors SW-4 and SW-5 was sampled for waste characterization on June 25, 2014; sediment from SW-3, SW-6, and SW-7 was sampled September 5, 2014. A summary of analytical results is presented in Table 3. Sample results showed that some sediment exceeded California's hazardous waste threshold for lead.⁴

Two 55-gallon drums containing sediment were shipped as non-Resource Conservation and Recovery Act (non-RCRA) hazardous waste by NRC Environmental Services to the Crosby & Overton facility in Long Beach, California (UESPA hazardous waste identification number CAD 028409019). The Crosby & Overton facility is authorized to receive Comprehensive Environmental Response, Compensation, and Liability Act waste under the USEPA's Offsite Rule.⁵

⁴ California Code of Regulations, Title 22, Division 4.5, Chapter 11, Section 66261.24, Characteristics of Toxicity.

⁵ Email correspondence between Kandice Bellamy of USEPA and Scott Bourne on October 23, 2014. Offsite Rule is from Code of Federal Regulation, Title 40, Section 300.440.

4.3 Storm Water Collection System Repairs

Based on the results of storm drain pipe inspections, LRTC subcontracted H&R Plumbing and Drain Cleaning, Inc. (H&R) of El Sobrante, California to repair the damaged sections of pipes leading to the SW-3 and SW-5 interceptors (Figure 3) on December 9, 2014. H&R performed the repairs using a trenchless method that utilized cure-in-place pipe patch manufactured by Source One Environmental. Pipe patch sleeves were wrapped around a packer, inserted into drain inlets, and pulled through the storm drain piping to the damaged area. The packer was expanded and the pipe patch was pushed against the piping, where it cured to create the patch.

5. ANNUAL SITE INSPECTION

This section describes the findings from the upland capping system inspection conducted during the 2014-2015 reporting year. Mr. Scott Bourne, PE and Mr. Brian Bandy of Weiss performed an annual inspection of the upland capping system on June 15, 2015, in accordance with the O&M Plan (PES, 1999). The inspection included visual observations of the concrete cap, gravel cover, and drainage system throughout the extent of the Upland Area. The findings of the inspection of the Upland Area storm water drainage system are included on the Upland Capping System Inspection Form (Appendix D); photographs taken during the inspection are included in Appendix A.

5.1 Concrete Cap Inspection

Visual observations of the concrete cap concentrated on cracks, joints, high-loading areas, and penetrations looking for signs of deterioration and exposure of the underlying subgrade. Any such defect was considered for its potential to compromise the ability of the cap to prevent wind and water erosion and lead to migration of pesticide-impacted sediments into the adjacent Lauritzen Channel, or exposure to Site workers. Particular emphasis was placed on re-examining areas with cracks and potential settlement as identified in the Third Five-Year Review (USEPA, 2011) and the 2013-2014 Annual Report (Weiss, 2014a).

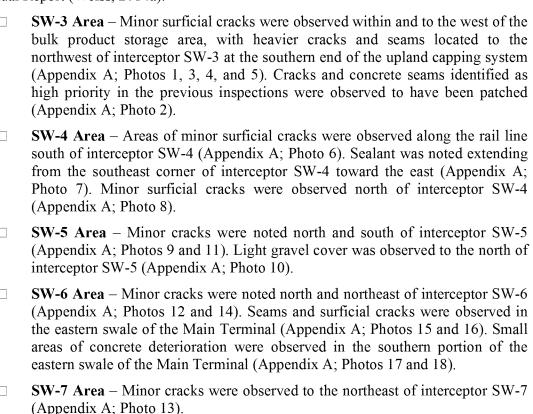


Figure 4 shows the locations of photographs taken to document cracks and gaps shown in Appendix A and described above. No evidence of differential settling or vertical displacement was observed.

No evidence of cracks, gaps, significant cap deterioration, or other material breach with apparent potential for exposure of the underlying subgrade was observed during the inspection. Weiss recommends that LRTC continue to monitor minor cracks noted during the inspection. No repairs are recommended at this time.

5.2 Gravel Cover Inspection

Visual observations of the gravel cover concentrated on identifying areas around the rail and shoreline where gravel cover was thin. A geotextile membrane underlies the gravel cover, but was not visually observed in any of the areas inspected. Below is a summary of observations from the concrete cap inspection.

- SW-4 Area The gravel cover in this area was observed to be thin in one area; the underlying geotextile fabric was not exposed in this area (Appendix A; Photo 6).
- SW-5 Area The gravel cover was observed to be thin in some areas, while the underlying geotextile fabric was not exposed (Appendix A; Photo 10).

No evidence of differential settling or vertical displacement was observed. Overall, the gravel cover was found to be in good condition and functioning properly with no apparent potential for exposure of the underlying subgrade observed. Weiss recommends that LRTC continue to regularly inspect the gravel cover and perform corrective actions as detailed in Section 6.

5.3 Storm Water Collection System Inspection

Visual observations were conducted at the drain inlets and the SW-3, SW-4, SW-5, SW-6, and SW-7 interceptors on June 15, 2015. The interceptors were inspected in June and September 2014 during cleaning of the drainage systems. Details of video inspections of underground pipe at interceptors SW-3, SW-6, and SW-7 are described in Section 4.2. No structural improvements to the drain inlets were found to be necessary during the inspection. The interceptors were found to be in working order with no corrective actions required.

6. PROPOSED SITE WORK FOR 2015-2016

Dı O&M Plaı	_	2015-2016 reporting year, O&M activities will continue in accordance with the 999):
	TATALAN TATALA	Storm water discharge samples will be collected from the combined SW-3 through SW-7 discharge location.
		An annual inspection of the concrete cap and gravel cover in the Upland Area will be performed in the early summer of 2016.
		Inspections of the upland capping system, including the drainage system, will continue as part of the SWPPP (Weiss, 2015) compliance activities and daily operations.

Any repairs to the cap, if required, will be documented and reported in a memorandum to the USEPA and the California Department of Toxic Substances Control. Proposed Site work under the O&M Plan for 2015-2016 is presented in Table 4.

LRTC is in the process of installing a roadway in the upland cap area across three railroad tracks as shown in Figure 4. This work is outside the scope of the O&M Plan but is planned to be completed during the 2015-2016 reporting year.

7. CONCLUSIONS

The annual upland capping system inspection found that the surface cap is in overall good condition and effectively functions to prevent erosion of the underlying soil. Damage was discovered in the underground storm water collection systems at SW-3 and SW-5, which was repaired during the 2014-2015 season.

Continued monitoring and maintenance is required. Maintenance recommendations include:

☐ Add gravel to gravel cover areas of SW-4 and SW-5;

☐ Monitor deteriorated concrete in the southern portion of the eastern swale of the Main Terminal at SW-6, and replace affected sections of concrete should further deterioration occur or evidence of underlying soil be observed;

☐ Implement BMPs identified in the LRT SWPPP (Weiss, 2015).

Pesticides were detected in storm water discharge samples during the 2014-2015 storm water season at concentrations consistent with historical detections. Continued monitoring of the Upland Area's storm water discharges for the presence of pesticides is necessary.

A storm water treatment system will be installed near the SW-5 interceptor to treat the combined storm water discharge from the Upland Cap Area. Treatment will include flocculation, sedimentation, and filtration.

8. REFERENCES

- PES Environmental, Inc., 1999. Revised Draft Operations and Maintenance Plan, Upland Capping System, Former United Heckathorn Site, March.
- State Water Resources Control Board, 1997. Water Quality Order 97-03-DWQ for National Pollutant Discharge Elimination System General Permit No. CAS000001 (Waste Discharge Requirements for Discharges of Storm Water Associated with Industrial Activities excluding Construction Activities), April.
- United States District Court, Northern District of California, 1996. *Consent Decree, Levin Group RD/RA*, United States of America Plaintiff v. Montrose Chemical Corporation of California, et al., June.
- United States Environmental Protection Agency (USEPA), 1994a. Feasibility Study for the United Heckathorn Superfund Site, Richmond, California. July.
- USEPA, 1994b. EPA Superfund Record of Decision: United Heckathorn Co., EPA ID: CAD981436363; OU 01, Richmond, CA, EPA/ROD/R09-96/5021996, October.
- USEPA, 2011. Third Five-Year Review Report for United Heckathorn Superfund Site, Richmond, California, September.
- Weiss, 2014a. 2013-2014 Annual Report for the United Heckathorn Superfund Site, Upland Capping System, Richmond, California, July.
- Weiss, 2014b. Storm Water Pollution Prevention Plan and Monitoring and Reporting Plan for Levin Richmond Terminal, 402 Wright Avenue, Richmond, California. September.
- Weiss, 2015. Storm Water Pollution Prevention Plan and Monitoring and Reporting Plan for Levin Richmond Terminal, 402 Wright Avenue, Richmond, California. June.

FIGURES

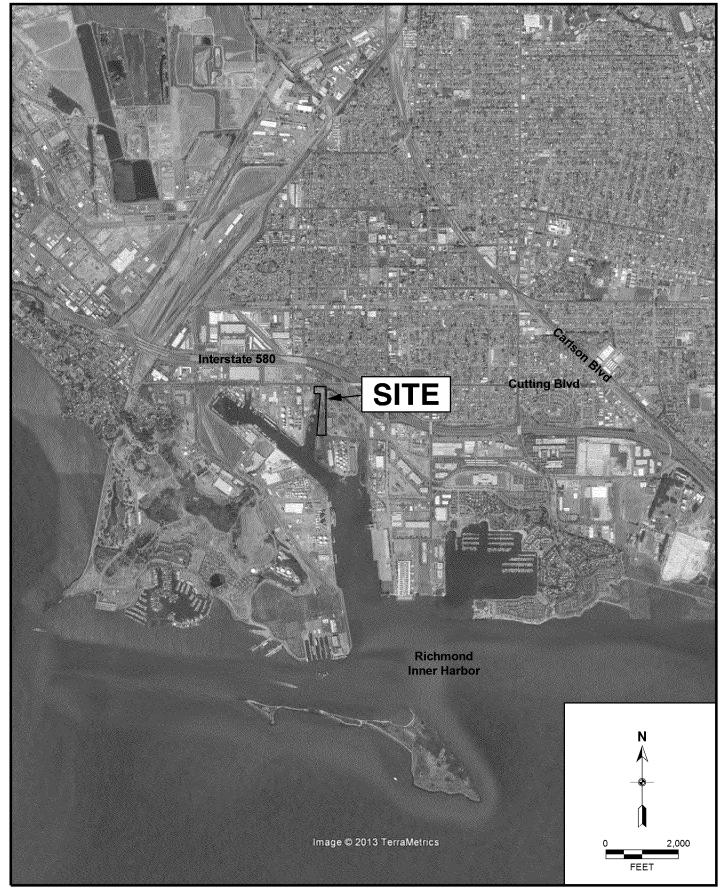
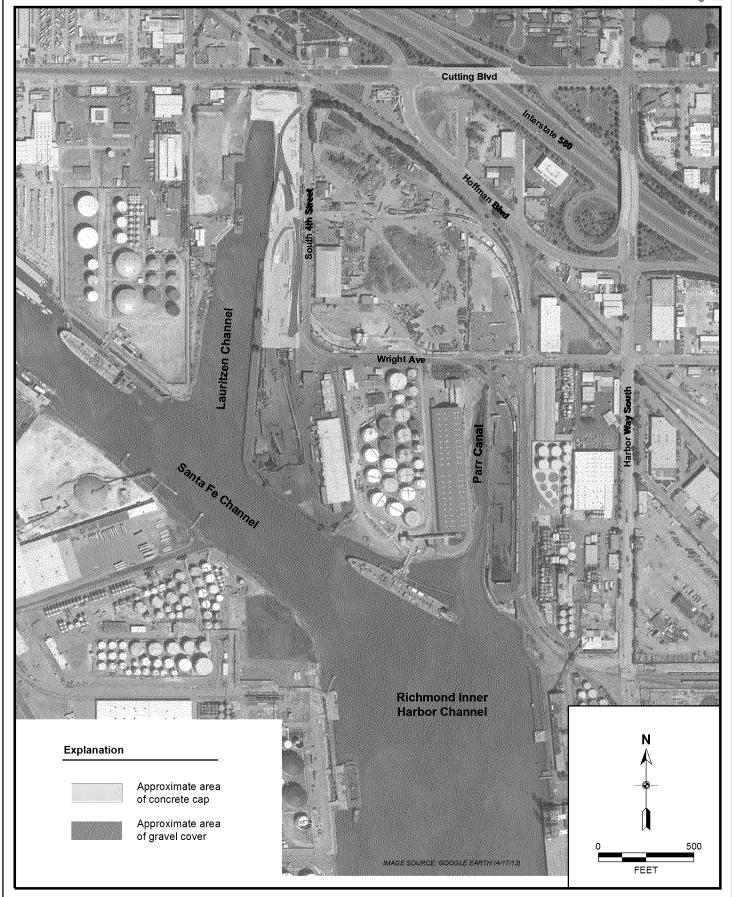
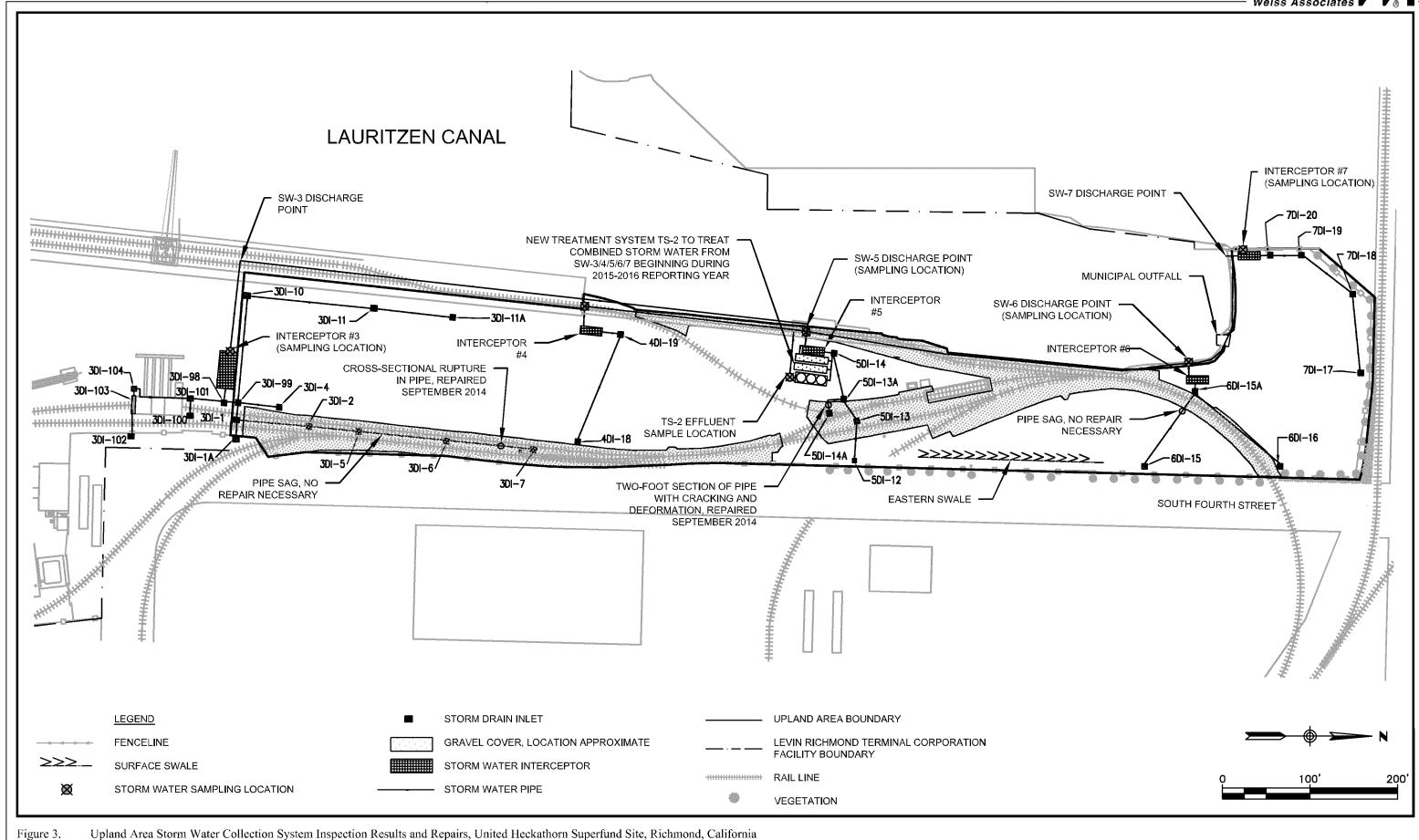
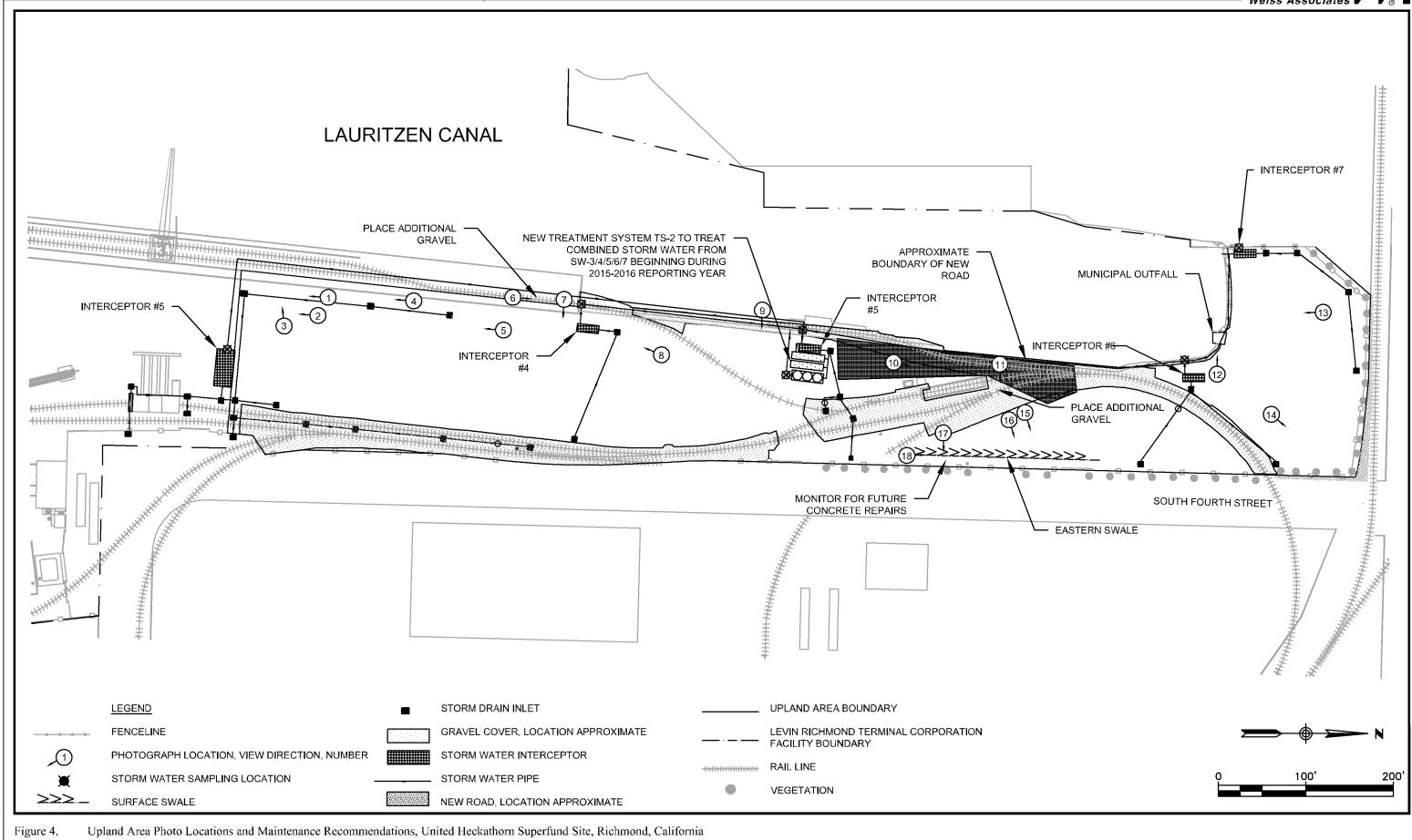


Figure 1. Site Location Map — United Heckathorn Superfund Site, Richmond, California

L:\Levin Richmond\Heckathorn\Site Location.ai 12/23/13


Figure 2. Site Layout — United Heckathorn Superfund Site, Richmond, California

L:\Levin Richmond\Heckathorn\Site Layout.ai 12/30/13

J:\Levin Richmond_Drawings\Heckathorn\Figure4_Photo Locations_082715.dwg

TABLES

Table 1. 2014-2015 Annual Storm Water Sampling Data for Pesticides, United Heckathorn Superfund Site, Richmond, California

Discharge Location Sample Date	Notes	↑ 4,4'-DDD	4,4'-DDE	4,4'-DDT	Aldrin	alpha-BHC	alpha-Chlordane	beta-BHC	Chlordane	delta-BHC	Dieldrin	Endosulfan I	Fndosulfan II	Endosulfan Sulfate	Endrin	Endrin Aldehyde	gamma-BHC (Lindane)	gamma-Chlordane	Heptachlor	Heptachlor Epoxide	Methoxychlor	√ Toxaphene
SW-3																						
11/20/2014		< 0.0019	< 0.0019	< 0.0019	< 0.0019	< 0.096	< 0.0019	< 0.096	< 0.96	< 0.096	< 0.0019	< 0.096	< 0.096	< 0.096	< 0.0019	< 0.096	< 0.0019	< 0.0019	0.0016	< 0.0019	< 0.096	< 0.024
12/2/2014		0.0028	0.014	0.019	< 0.0020	< 0.097	< 0.0020	< 0.097	< 0.97	< 0.097	< 0.0020	< 0.097	< 0.097	< 0.097	< 0.0020	< 0.097	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.097	< 0.025
12/2/2014	Duplicate	0.0025	0.014	0.019	< 0.0019	< 0.097	< 0.0019	< 0.097	< 0.97	< 0.097	< 0.0019	< 0.097	< 0.097	< 0.097	< 0.0019	< 0.097	< 0.0019	< 0.0019	< 0.0019	< 0.0019	< 0.097	< 0.024
12/11/2014		0.0023	< 0.0022	0.039	< 0.0022	< 0.095	< 0.0022	< 0.095	< 0.95	< 0.095	< 0.0022	0.030	< 0.095	< 0.095	< 0.0022	< 0.095	< 0.0022	<0.0022	<0.0022	< 0.0022	< 0.095	< 0.027
SW-4/5/6/7																						
11/20/2014		< 0.0019	< 0.0019	0.020	< 0.0019	< 0.096	< 0.0019	< 0.096	< 0.96	< 0.096	< 0.0019	0.042	< 0.096	< 0.096	0.011	< 0.096	< 0.0019	<0.0019	< 0.0019	< 0.0019	< 0.096	< 0.024
11/20/2014	Duplicate	< 0.0019	< 0.0019	0.022	< 0.0019	< 0.10	< 0.0019	< 0.10	<1.0	< 0.10	< 0.0019	0.039	< 0.10	< 0.10	0.012	< 0.10	< 0.0019	<0.0019	< 0.0019	< 0.0019	< 0.10	< 0.024
12/2/2014		< 0.0019	< 0.0019	0.0035	< 0.0019	< 0.096	< 0.0019	< 0.096	< 0.96	< 0.096	< 0.0019	< 0.096	< 0.096	< 0.096	< 0.0019	< 0.096	< 0.0019	<0.0019	<0.0019	< 0.0019	<0.096	< 0.024
12/11/2014		0.0033	<0.0019	0.0049	< 0.0019	< 0.095	< 0.0019	< 0.095	< 0.95	< 0.095	< 0.0019	< 0.095	< 0.095	< 0.095	< 0.0019	< 0.095	< 0.0019	<0.0019	<0.0019	< 0.0019	< 0.095	<0.024
Final Remediation Level ^a				0.00059							0.00014											

Notes:

Data presented is from 2014-2015 storm water sampling events.

Detected concentrations are displayed in **bold**.

Acronyms/Abbreviations:

J - concentration reported is an estimated value

TPH - total petroleum hydrocarbons

μg/L - micrograms pet liter

USEPA - United States Environmental Protection Agency

<n - not detected above the reporting limit

--- - not analyzed

^aBased on USEPA Superfund Record of Decision: United Heckathorn Co., October 1994, for surface waters in the Lauritzen, Santa Fe, and lower Richmond Inner Harbor Channels.

Table 2. 2014-2015 Annual Storm Water Sampling Data for General Parameters and Metals, United Heckathorn Superfund Site, Richmond, California

Discharge Location / Sample Date	Notes	Hd	Specific Conductance mo/sodmμ	m Total Oil and Grease		Total Suspended Solids	μg/L		Lopper L'βπ	uo. μg/L	Д/gл П/gл	r	Nickel Nickel		ouz μg/L
SW-3															
11/20/2014		6.92	3,500	< 5.6		190	1,300		14	J 2,600	9.6	J	6.5	J	210
12/2/2014		7.31	890	<6.6		120	950		7.6	2,100	7.7		3.3		100
12/2/2014	Duplicate	7.31	900	< 5.2		120	1,000		7.4	2,100	7.6		3.2		100
12/11/2014		7.82	3,100	2.5	J	280	2,700		13	3,700	10		5.5	J	170
SW-4/5/6/7															
11/20/2014		7.71	230	< 5.5		10	160		26	670	11		4.9		400
11/20/2014	Duplicate	7.71	230	< 5.5		9.0	190		27	700	12		5.0		410
12/2/2014		6.80	220	< 5.2		79	830		8.9	1,300	7.5		2.9	J	96
12/11/2014		7.61	540	1.2	J	20	480	J	5.7	430	1.9	J	<15		91

Acronyms/Abbreviations:

J - concentration reported is an estimated value

mg/L - milligrams per liter

μg/L - micrograms per liter

µmhos/cm - microsiemens per centimeter

--- - not analyzed

<n - not detected above the reporting limit

Table 3. Waste Characterization Sample Results, United Heckathorn Superfund Site, Richmond, California

	Regulatory Thresholds			SW-4 and SW-5 Solid Waste		nd SW-5 ate Extract	SW-3, SW-6, and SW-7 Solid Waste
		Date		6/25/2014		2014	9/5/2014
	TTLC	TCLP	STLC	Result ^a	TCLP Result	STLC Result	Result ^a
Fish Toxicity							
96 Hour Acute Toxicity	-	-	-	PASS	-	-	-
Volatiles				μg/kg			μg/kg
Benzene	-	500	-	<5.0	-	-	-
Ethylbenzene	-	-	-	<5.0	-	-	-
Toluene	-	-	-	< 5.0	-	-	-
Xylenes, total	-	-	-	<9.9	-	-	-
ТРН				mg/kg			mg/kg
TPH-G	_	-	_	< 0.250	_	-	-
TPH-D	_	_	_	770	_	_	-
ТРН-МО	_	-	-	3,100	_	-	-
Pesticides				μg/kg			μg/kg
Aldrin	1,400	_	140	<1.9	_	_	<1.9
Chlordane	2,500	30	250	<39	_	_	<39
4,4-DDT	1,000 ^b	-	100 ^b	290	_	_	7.8
4,4-DDE	1,000 ^b	_	100 ^b	190	_	_	11
4,4-DDD	1,000 ^b	_	100 ^b	290	_	_	26
Total DDT	1,000 ^b	_	100 ^b	770	_	_	44.8
Dieldrin	8,000	_	800	25	_	_	<1.9
Endrin	200	20	20	<1.9	_	_	<1.9
Heptachlor	4,700	8	470	<1.9	_	_	<1.9
Methoxychlor	100,000	10000	10,000	<1.9	_	_	<1.9
Metals				mg/kg	me	g/L	mg/kg
Antimony	500	NE	15	<1.8	,	-	<2.1
Arsenic	500	5.0	5.0	5.0	_	_	4.6
Barium	10,000	100	100	130	_	_	160
Beryllium	75	NE	0.75	< 0.35	_	_	1.60
Cadmium	100	1.0	1.0	1.8	_	_	0.89
Chromium	2,500	5	5	44	_	_	26
Cobalt	8,000	NE	80	11	_	_	18
Copper	2,500	NE	25	88	_	_	28
Lead	1,000	5.0	5.0	180	< 0.050	8.2	22
Mercury	20	0.2	0.2	0.59	-	-	0.11
Molybdenum	3,500	NE	350	5.1	_	_	<2.1
Nickel	2,000	NE	20	98	_	_	74
Selenium	100	1.0	1.0	<3.5	_	_	<4.3
Silver	500	5	5	< 0.88			<1.1

Table 3. Waste Characterization Sample Results, United Heckathorn Superfund Site, Richmond, California

	Regula	atory Thre	esholds	SW-4 and SW-5 Solid Waste	SW-4 and SW-5 Solid Waste Extract		olid Waste Extract						
		Date		6/25/2014	6/25/2014		9/5/2014						
	TTLC	TCLP	STLC	Result ^a	TCLP Result	STLC Result	Result ^a						
Metals (cont.)				mg/kg	mş	g/L	mg/kg						
Thallium	700	NE	7.0	<1.8	-	-	<2.1						
Vanadium	2,400	NE	24	84	-	-	150						
Zinc	5,000	NE	250	640	-	-	160						

Notes:

Bold values represent waste constituent concentrations exceeding one or more of the toxicity threshold concentrations for the constituent.

Abbreviations:

4,4-DDD - 4,4-dichlorodiphenyldichloroethane

4,4-DDE - 4,4-dichlorodiphenldichloroethene

4,4-DDT - 4,4-dichlorophenyltrichloroethane

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

NE - not established

STLC - Soluble Threshold Limit Concentration per Table II- List of Inorganic Persistant and Bioaccumulative Toxic Substances and their Soluble Threshold Limit Concentration (STLC) and Total Threshold Limit Concentration (TTLC) Values (Title 22, California Code of Regulations, §66261.24)

TCLP - Toxicity Characteristic Leaching Procedure maximum concentration for toxicity per Table 1-Maximum Concentration of Contaminants for the Toxicity Characteristic (Title 40 Code of Federal Regulations, §261.24)

TPH-D - total petroleum hydrocarbons as diesel

TPH-G - total petroleum hydrocarbons as gasoline

TPH-MO - total petroleum hydrocarbon as motor oil

TTLC - Total Threshold Limit Concentration per Table II- List of Inorganic Persistant and Bioaccumulative Toxic Substances and their Soluble Threshold Limit Concentration (STLC) and Total Threshold Limit Concentration (TTLC) Values (Title 22, California Code of Regulations, §66261.24)

μg/kg - micrograms per kilogram

USEPA - United States Environmental Protection Agency

--- - not analyzed

<n - not detected above the reporting limit

^a Analytical results provided are wet basis concentrations.

^b The STLC and TTLC values of 100 and 1,000 μg/kg, respectively, are for total DDT (sum of DDT, DDE, and DDD concentrations).

Table 4. Proposed Site Work for 2015-2016, United Heckathorn Superfund Site, Richmond, California

Aspect	Description	Anticipated Completion Date
General	Implement all activities (i.e., cap maintenance, storm water monitoring, interceptor cleanout) described in the O&M Plan. ¹	Continuously
	Submit report of O&M performed for the period of July 1, 2015 to June 30, 2016.	On/around July 15, 2016
Concrete Cap	Perform 2015-2016 annual inspection of the cap under oversight of a registered engineer.	June 1, 2016
	Monitor deteriorated concrete in the southern portion of the eastern swale of the Main Terminal identified in Photos 17 and 18 (Appendix A); replace affected sections should evidence of underlying soil be observed.	Continuously
	Monitor identified cracks, seals, and joints for signs of propagation and/or degradation throughout upland capping system.	Continuously
Gravel Cover	Add gravel to the interceptor SW-4 and SW-5 areas identified in Photos 7 and 11 (Appendix A) to ensure proper coverage.	October 1, 2015
	Monitor the gravel cover throughout the Upland Area for signs of thinning or ground exposure.	Continuously
Storm Water System	Install storm water treatment at the SW-5 discharge location to treat combined storm water pumped from interceptors SW-3, SW-4, SW-5, SW-6, and SW-7 using flocculation, settling, and filtration methods.	October 1, 2015
	Continue developing trend graphs showing temporary and spatial distribution of detected pesticides for the preceding five years.	July 15, 2016

¹ Revised Draft Operations and Mainteannce Plan, Upland Capping System, Former United Heckathorn Site, PES Environmental, Inc., March 1999.

APPENDIX A

UPLAND CAPPING SYSTEM INSPECTION PHOTOGRAPHS

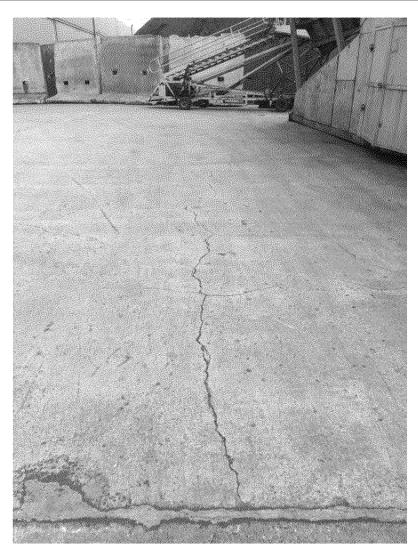


Photo 1 – Looking south along western alley of secondary storage area: surficial cracking in SW-3 area, with sealed crack in foreground.

Photo 2 – Looking south along western alley of secondary storage area: sealed surficial cracks at concrete seam.

Photo 3 – Looking west across western alley of secondary storage area: surficial cracking in SW-3 area.

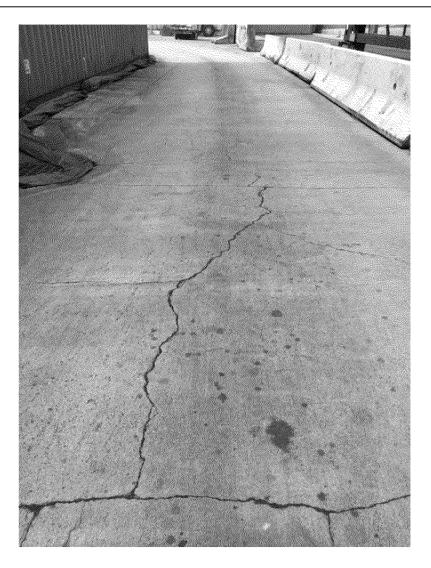


Photo 4 – Looking south along western alley of secondary storage area: surficial cracking near drain inlet 3DI-11.

Photo 5 - Looking south toward drain inlet 3DI-11A: areas of surficial cracking and concrete seam.

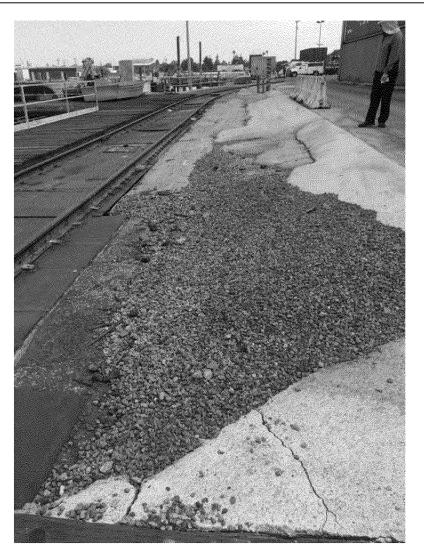


Photo 6 – Looking north, surficial cracks and areas with sparse gravel coverage; area will be modified to have combination of gravel and concrete cap.

with sealant added in December 2013.

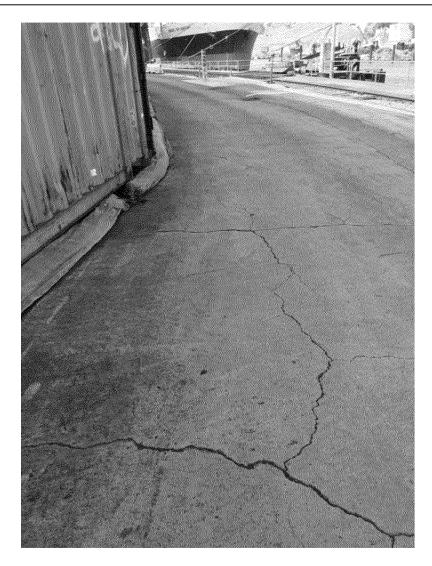
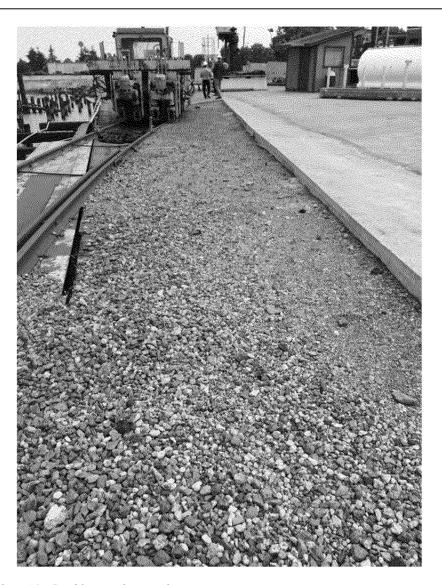


Photo 7 - Looking east from corner of interceptor SW-4: crack extending east Photo 8 - Looking southwest toward 4DI-19: surficial cracks. sealant added in December 2013.

Appendix A
Upland Capping System Inspection Photographs
2014-2015 Annual Report, United HeckathornSuperfundSite
Richmond, California

Photo 9 - Looking east: surficial cracks.



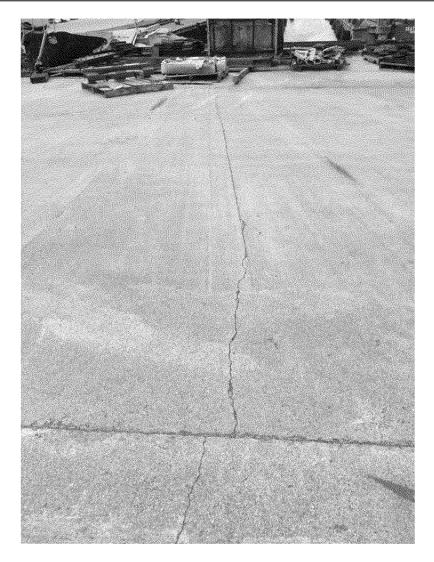

Photo 10 - Looking north: gravel cover.

Photo 11 – Looking east: surficial cracks.

Photo 12 – Looking west toward Municipal Outfall: seams and surficial cracks.

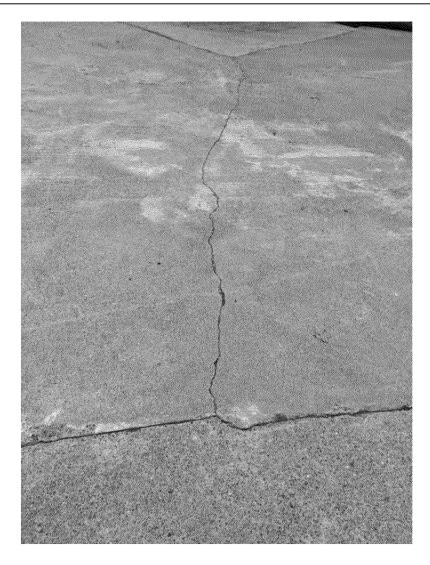


Photo 13 - Northwest corner of site, looking south near interceptor SW-7: minor Photo 14 - Northeast corner of site: minor surface cracks. surface cracks noted.

Photo 15- Area southeast of interceptor SW-6: minor surface cracks.

Photo 16 – Area southeast of interceptor SW-6: minor surface cracks.

Appendix A
Upland Capping System Inspection Photographs
2014-2015 Annual Report, United Heckathorn Superfund Site
Richmond, California

Photo 17 – Looking east, north of 5DI-14A: areas of minor concrete Photo 18 – Looking east, north of 5DI-14A: areas of minor concrete deterioration.

APPENDIX B

2014-2015 ANNUAL STORM WATER MONITORING REPORT

LEVIN RICHMOND TERMINAL CORPORTION 402 WRIGHT AVENUE RICHMOND, CA 94804

(510) 232-4422 FAX (510) 236-1827

June 30, 2015

Regional Water Quality Control Board-San Francisco Bay Region 1515 Clay Street, Suite 1400 Oakland, California 94612

RE:

2014-2015 Annual Report for Storm Water Discharges Associated with Industrial Activities

Levin Richmond Terminal Corporation

WDID No.: 2 07I002394

Dear Mr. Pham:

Enclosed please find the 2014-2015 Annual Report for Storm Water Discharges Associated with Industrial Activities presenting storm water monitoring data and observations related to storm water compliance activities at the Levin Richmond Terminal Facility, located at 402 Wright Avenue, Richmond, California. Storm water compliance activities were conducted under the requirements of the Waste Discharge Requirements for Discharges of Storm Water Associated with Industrial Activities Excluding Construction Activities specified in the State Water Resources Control Board (SWRCB) Water Quality Order No. 97-03-DWQ, National Pollutant Discharge Elimination System (NPDES) General Permit No. CAS000001 (Industrial General Permit).

Please feel free to contact me if you have any questions or concerns with the attached report.

Sincerely,

Gary Levin

Chief Executive Officer

ary Leur

(510) 307-4091

Attachment A. 2014-2015 Annual Report for Storm Water Discharges Associated with Industrial Activities

Attachment B. 2014-2015 Annual Report for Storm Water Discharges Associated with Industrial Activities - Additional Explanations

Attachment C. Analytical Data

Table 1, 2014-2015 Annual Storm Water Sampling Data for General Parameters and Metals

Table 2. 2014-2015 Annual Storm Water Sampling Data for Detected Pesticides

2014-2015 Laboratory Analytical Reports

ATTACHMENT A

2014-2015 ANNUAL REPORT FOR STORM WATER DISCHARGES ASSOCIATED WITH INDUSTRIAL ACTIVITIES

2014-2015 ANNUAL REPORT FOR STORM WATER DISCHARGES ASSOCIATED WITH INDUSTRIAL ACTIVITIES

for

Levin Richmond Terminal Corporation WDID No.: 2 071002394

Prepared for

Regional Water Quality Control Board – San Francisco Bay Region 1515 Clay Street, Suite 1400 Oakland, California 94612

June 30, 2015

STATE OF CALIFORNIA STATE WATER RESOURCES CONTROL BOARD

2014-2015 ANNUAL REPORT

FOR STORM WATER DISCHARGES ASSOCIATED WITH INDUSTRIAL ACTIVITIES

Reporting Period July 1, 2014 through June 30, 2015

An Annual Report is required to be submitted to your local Regional Water Quality Control Board (Regional Board) by July 1 of each year. This document must be certified and signed, under penalty of perjury, by the appropriate official of your company. Many of the Annual Report questions require an explanation. Please provide explanations on a separate sheet as an attachment. Retain a copy of the completed Annual Report for your records.

Please circle or highlight any information contained in Items A, B, and C below that is new or revised so we can update our records. Please remember that a Notice of Termination and new Notice of Intent are required whenever a facility operation is relocated or changes ownership.

If you have any questions, please contact your Regional Board Industrial Storm Water Permit Contact. The names, telephone numbers, and e-mail addresses of the Regional Board contacts, as well as the Regional Board Offices addresses are indicated below.

REGIONAL BOARD INFORMATION:

Contact: Danny Pham San Francisco Bay Region Tel: (510) 622-2300 1515 Clay Street, Ste.1400

Email: r2stormwater@waterboards.ca.gov Oakland, CA 94612

GENERAL INFORMATION

A. Facility Information:

Levin Richmond Terminal Corp Contact: Gary Levin

402 Wright Ave Email:

Richmond, CA 94804 Tel: 510-307-4091

WDID NO: 2 071002394

SIC Code(s):

4491 Marine Cargo Handling

B. Facility Operator Information:

Contact: Gary Levin Levin Richmond Terminal Corp

Email: garyl@levinterminal.com 402 Wright Ave

Tel: 510-307-4091 Richmond, CA 94804

C. Facility Billing Information:

Levin Richmond Terminal Corp Contact: Gary Levin

402 Wright Ave Email: garyl@levinterminal.com

Richmond, CA 94804 Tel: 510-307-4091

Additional Table D Parameters: Al,Fe,Pb,Zn

2014-2015 **ANNUAL REPORT**

SPECIFIC INFORMATION

MONITORING AND REPORTING PROGRAM

D.	SA	MPLING A	ND ANA	LYSIS EXEMP	TIONS AND RE	EDUCTIONS						
	1.			period, was yo sections B.12 o		pt from collectir neral Permit?	ng and ana	alyzing	samples fi	om two sto	rm events in	
		YI	ES	Go to Item D.2			X	NO	Go to S	Section E		
	2.					collecting and a				storm ever	nts. Attach a	
		i	Partici	pating in an Ap _l	oroved Group N	Monitoring Plan		Group	Name :			
		ii	Submi	tted No Expos	ure Certificati	on (NEC)		Date S	Submitted:			
			Re-eva	aluation Date:								
			Does f	acility continue	to satisfy NEC	conditions?		YES] NO		
		iii.	Submi	tted Sampling	Reduction Ce	ertification (SR	C)	Date 9	Submitted:			
			Re-eva	aluation Date:								
			Does f	acility continue	to satisfy SRC	conditions?		YES		NO		
		iv	Receiv	ved Regional Bo	oard Certificatio	on	Certifica	tion Da	te:			
		v	Receiv	ed Local Agen	cy Certification			Cetific	ation Date	:		
	3.	If you che	ecked bo	oxes i or iii abo\	ve, were you so	heduled to sam	iple one s	torm ev	ent during	the reportin	g year?	
		YE	ES	Go to Section	Ε			NO	Go to S	Section F		
	4.	If you che	ecked bo	oxes ii, iv, or v,	go to Section F							
E.	SAM	IPLING AN	ID ANAL	YSIS RESULTS	<u> </u>							
	1.	How mar	ny storm	events did you	sample?			i.i or iii.			ou checked lanation if yo	u
	2.					irst storm of the 5 of the Genera		on that	produced	a discharge	during	
		X	YES					NO,	you do not	sample the firs	Please note tha et storm event, y storm events)	
	3.	How mar	ny storm	water discharg	je locations are	e at your facility	?1	1				

4.		each storm event sampled, did you collect and analyze a mple from each of the facility's storm water discharge location	s?	YES, go to	Item E	Ξ.6	X	NO
5.		is sample collection or analysis reduced in accordance in Section B.7.d of the General Permit?		YES	X	NO, attacl	ı expla	nation
		YES", attach documentation supporting your determination t two or more drainage areas are substantially identical.						
	Dat	te facility's drainage areas were last evaluated	_					
6.	We	ere all samples collected during the first hour of discharge?		YES	X	NO, attach	n expla	nation
7.		is <u>all</u> storm water sampling preceded by three (3) rking days without a storm water discharge?	X	YES		NO, attacl	ı expla	nation
8.		ere there any discharges of stormwater that had been approarily stored or contained? (such as from a pond)		YES	X	NO, go to	ltem E.	10
9.	cont	you collect and analyze samples of temporarily stored or ained storm water discharges from two storm events? one storm event if you checked item D.2.i or iii. above)		YES		NO, attacl	n expla	nation
10.	Spec	tion B.5. of the General Permit requires you to analyze storm cific Conductance (SC), Total Organic Carbon (TOC) or Oil ar orm water discharges in significant quantities, and analytical	nd Greas	e (O&G), otl	ner pol	lutants likely	to be	present
	a.	Does Table D contain any additional parameters related to your facility's SIC code(s)?	X	YES		NO, Go to	Item E	.11
	b.	Did you analyze all storm water samples for the applicable parameters listed in Table D?	X	YES		NO		
	C.	If you did not analyze all storm water samples for the applicable Table D parameters, check one of the following reasons:						
		In prior sampling years, the parameter(s) have no consecutive sampling events. Attach explanatio		etected in sig	ınificar	nt quantities	from tv	vo
		The parameter(s) is not likely to be present in stor discharges in significant quantities based upon the						
		Other. Attach explanation						
11.		each storm event sampled, attach a copy of the laboratory an lts using Form 1 or its equivalent. The following must be pro					and ar	nalysis
	•	Date and time of sample collection Name and title of sampler. Parameters tested. Name of analytical testing laboratory. Discharge location identification.	Test de Date of	ethods used. tection limits	i.	nalytical res	ults.	

F. QUARTERLY VISUAL OBSERVATIONS

1.	Authorized Non-Storm Water Discharges Section B.3.b of the General Permit requires quarterly visual observations of all authorized non-storm water discharges and their sources.										
	a.	Do authorized non-storm water discharges occur at your facility?									
		YES NO Go to Item F.2									
	b.	Indicate whether you visually observed all authorized non-storm water discharges and their sources during the quarters when they were discharged. Attach an explanation for any "NO" answers . Indicate "N/A" for quarters without any authorized non-storm water discharges.									
		July -September YES NO NA October-December YES NO N/A									
		January-March YES NO NA April-June YES NO NA									
	C.	Use Form 2 to report quarterly visual observations of authorized non-storm water discharges or provide the following information.									
		 i. name of each authorized non-storm water discharge ii. date and time of observation iii. source and location of each authorized non-storm water discharge iv. characteristics of the discharge at its source and impacted drainage area/discharge location v. name, title, and signature of observer vi. any new or revised BMPs necessary to reduce or prevent pollutants in authorized non-storm water discharges. Provide new or revised BMP implementation date. 									
2.	Secti	uthorized Non-Storm Water Discharges ion B.3.a of the General Permit requires quarterly visual observations of all drainage areas to detect the ence of unauthorized non-storm water discharges and their sources.									
	a.	Indicate whether you visually observed all drainage areas to detect the presence of unauthorized non-storm water discharges and their sources. Attach an explanation for any "NO" answers .									
		July -September X YES NO October-December X YES NO									
		January-March X YES NO April-June X YES NO									
	b.	Based upon the quarterly visual observations, were any unauthorized non-storm water discharges detected?									
		YES NO Go to item F.2.d									
	C.	Have each of the unauthorized non-storm water discharges been eliminated or permitted?									
		YES NO Attach explanation									
	d.	Use Form 3 to report quarterly unauthorized non-storm water discharge visual observations or provide the following information.									
		 i. name of each unauthorized non-storm water discharge. ii. date and time of observation. iii. source and location of each unauthorized non-storm water discharge. iv. characteristics of the discharge at its source and impacted drainage area/discharge location. v. name, title, and signature of observer. vi. any corrective actions necessary to eliminate the source of each unauthorized non-storm water discharge and to clean impacted drainage areas. Provide date unauthorized non-storm water discharge(s) was eliminated or scheduled to be eliminated. 									

G. MONTHLY WET SEASON VISUAL OBSERVATIONS

Section B.4.a of the General Permit requires you to conduct monthly visual observations of storm water discharges at all storm water discharge locations during the wet season. These observations shall occur during the first hour of discharge or, in the case of temporarily stored or contained storm water, at the time of discharge.

 Indicate below whether monthly visual observations of storm water discharges occurred at <u>all</u> discharge locations. Attach an explanation for any "NO" answers. Include in this explanation whether any eligible storm events occurred during scheduled facility operating hours that did not result in a storm water discharge, and provide the date, time, name and title of the person who observed that there was no storm water discharge.

October	YES	NO X	February	YES	NO
November	X		March		X
December	X		April		X
January		X	May		X

- 2. Report monthly wet season visual observations using Form 4 or provide the following information.
 - a. date, time, and location of observation
 - b. name and title of observer
 - c. characteristics of the discharge (i.e., odor, color, etc.) and source of any pollutants observed.
 - d. **any** new or revised BMPs necessary to reduce or prevent pollutants in storm water discharges. Provide new or revised BMP implementation date.

ANNUAL COMPREHENSIVE SITE COMPLIANCE EVALUATION (ACSCE)

H. ACSCE CHECKLIST

Section A.9 of the General Permit requires the facility operator to conduct one ACSCE in each reporting period (July 1-June 30). Evaluations must be conducted within 8-16 months of each other. The SWPPP and monitoring program shall be revised and implemented, as necessary, within 90 days of the evaluation. The checklist below includes the minimum steps necessary to complete a ACSCE. Indicate whether you have performed each step below. **Attach an explanation for any "NO" answers.**

- 1. Have you inspected all potential pollutant sources and industrial activities areas? X YES NO The following areas should be inspected:
 - areas where spills and leaks have occured during the last year.
 - outdoor wash and rinse areas.
 - process/manufacturing areas.
 - loading, unloading, and transfer areas.
 - waste storage/disposal areas.
 - · dust/particulate generating areas.
 - erosion areas.

- building repair, remodeling, and construction
- material storage areas
- vehicle/equipment storage areas
- truck parking and access areas
- rooftop equipment areas
- vehicle fueling/maintenance areas
- · non-stormwater discharge generating areas
- 2. Have you reviewed your SWPPP to assure that its BMPs address existing potential pollutant sources and industrial activities areas?
 3. Have you inspected the entire facility to verify that the SWPPP's site map, is up-to-date? The following site map items should be verified:
 - · facility boundaries
 - outline of all storm water drainage areas
 - areas impacted by run-on

- storm water discharges locations
- storm water collection and conveyance system
- structural control measures such as catch basins, berms, containment areas, oil/water separators, etc.

4.	Have you reviewed all General Permit compliance recorsince the last annual evaluation?	ds gene	erated	X YES	NO
	The following records should be reviewed:				
	 quarterly authorized non-storm water discharge visual observations monthly storm water discharge visual observation records of spills/leaks and associated clean-up/response activities 	• :	water discharge Sampling and Ar	ntenance inspection	
5.	Have you reviewed the major elements of the SWPPP to compliance with the General Permit?	o assure	Э	X YES	☐ NO
	The following SWPPP items should be reviewed:				
	pollution prevention teamlist of significant materialsdescription of potential pollutant sources	• i	dentification and	otential pollutant of description of the each potential po	e BMPs to be
6.	Have you reviewed your SWPPP to assure that a) the B in reducing or preventing pollutants in storm water discharges, and b) the BMPs are being	narges a	and authorized	X YES	□NO
	The following BMP categories should be reviewed:				
	 good housekeeping practices spill response employee training erosion control quality assurance 	•	preventative mai material handling waste handling/s structural BMPs	g and storage pra	actices
7.	Has all material handling equipment and equipment nee implement the SWPPP been inspected?	eded to		X YES	NO
<u>ACS</u>	SCE EVALUATION REPORT				
The	facility operator is required to provide an evaluation report	rt that in	icludes:		
•	identification of personnel performing the evaluation the date(s) of the evaluation necessary SWPPP revisions	• 6		lementing SWPP non-compliance a	
Use	Form 5 to report the results of your evaluation or develop	o an equ	uivalent form.		
ACS	SCE CERTIFICATION				
	facility operator is required to certify compliance with the ify compliance, both the SWPPP and Monitoring Program				
	ed upon your ACSCE, do you certify compliance with the vities Storm Water General Permit?	Industri		ES	NO
	ou answered "NO" attach an explanation to the ACSCE Expliance with the Industrial Activities Storm Water Genera			ou are not in	

١.

J.

ATTACHMENT SUMMARY

Αŗ	Applicable) to questions 2-4 if you are not required to provide those attachments.											
1.	Have you attached Forms 1,2,3,4, and 5 or their equivalent?	X	YES (Ma	ndatory)								
2.	If you conducted sampling and analysis, have you attached the laboratory analytical reports?	X	YES	☐ NO	☐ NA							
3.	If you checked box II, III, IV, or V in item D.2 of this Annual Report, have you attached the first page of the appropriate certifications?		YES	☐ NO	⋉ NA							
4.	Have you attached an explanation for each "NO" answer in items E.1, E.2, E.5-E.7, E.9, E.10.c, F.1.b, F.2.a, F.2.c, G.1, H.1-H.7, or J?	X	YES	□ NO	□ NA							
Al	NNUAL REPORT CERTIFICATION											
Pi we pe wi su sig	I am duly authorized to sign reports required by the INDUSTRIAL ACTIVITIES STORM WATER GENERAL PERMIT (see Standard Provision C.9) and I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to ensure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those person directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.											
Pr	inted Name: <u>GARY LEVIN</u>											
Si	inted Name: <u>GARY LEVIN</u> gnature: <u>Jary Zerrn</u>			_ Da <u>te: 6/</u> _	30/2015							
Ti	tle: CEO		·									

Answer the questions below to help you determine what should be attached to this annual report. Answer NA (Not

FIRST STORM EVENT

If analytical results are less than the detection limit (or non detectable), show the value as less than the numerical value of the detection limit (example: <.05)

If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank

When analysis is done using portable analysis (such as portable pH meters, SC meters, etc.), indicate "PA" in the appropriate test method used box. Make additional copies of this form as necessary.

NAME OF PERSON COLLECTING SAMPLE(S): Mary Cunningham TITLE: Senior Staff Engineer SIGNATURE:

	DATE/TIME OF SAMPLE COLLECTION	TIME DISCHARGE STARTED	ANALYTICAL RESULTS For First Storm Event									
DESCRIBE DISCHARGE			BASIC PARAMETERS					OTHER PARAMETERS*				
LOCATION Example: NW Out Fall			pН	TSS	SC	O&G	TOC	Aluminum	Iron	Lead	Zinc	
TS1-E	11/20/14 ☐ AM 2:15 ☑ PM	AM _1:00 ☒ PM	7.82	12	1,000	< 1.4	MF.	160	310	5.5	240	
SW-3		3:30 ☐ AM	6.92	190	3,500	< 1.6	and .	1,300	2,600	9.6 J	210	
SW-4/5/6/7	11/20/14 AM 2:45 M PM	1:30** ☐ AM PM	7.71	10	230	< 1.5	w	160	670	pennel pennel	400	
SW-4/5/6/7 Duplicate	11/20/14 AM 2:50 M PM	AM AM PM	7.71	9.0	230	< 1.5	86	190	700	12	410	
TEST REPORTING	UNITS:		pH Units	mg/l	umho/cm	mg/l	mg/l	ug/L	ug/L	ug/L	ug/L	
TEST METHOD DETECTION LIMIT:				0.83 - 9.1	1.0	1.4 - 1.6	-	2.4 - 24	5.7 - 57	0.057 - 0.57	0.4 - 4.0	
TEST METHOD USED:			Portable field meter	SM2540D	SM2510B	1664A	-	EPA 200.8	EPA 200.8	EPA 200.8	EPA 200.8	
ANALYZED BY (SE		Self	Test America	Test America	Test America		Test America	Test America	Test America	Test America		

TSS - Total Suspended Solids

SC - Specific Conductance

O&G - Oil & Grease

^{*}Additional parameters not required by the IGP, including copper and nickel (all discharge locations) and pesticides (locations SW-3 and SW-4/5/6/7), are included in Attachment C.

^{**}Estimate; exact discharge start time unknown.

FIRST STORM EVENT

If analytical results are less than the detection limit (or non detectable), show the value as less than the numerical value of the detection limit (example: <.05)

If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank

When analysis is done using portable analysis (such as portable pH meters, SC meters, etc.), indicate "PA" in the appropriate test method used box. Make additional copies of this form as necessary.

NAME OF PERSON COLLECTING SAMPLE(S): Mary Cunningham	TITLE: Senior Staff Engineer	SIGNATURE:	The Landing
--	------------------------------	------------	-------------

			ANALYTICAL RESULTS For First Storm Event									
DESCRIBE DISCHARGE	DATE/TIME OF SAMPLE	TIME DISCHARGE STARTED	BASIC PARAMETERS					OTHER PARAMETERS*				
LOCATION Example: NW Out Fall	COLLECTION		рН	TSS	SC	O&G	TOC	Aluminum	Iron	Lead	Zinc	
SW-11	11/20/14 AM 3:00 M PM	AM 	6.78	30	8,500	< 1.6	89	170	410	3.0	65	
SW-12		unknown PM	8.01	12	160	< 1.6	uer	710	2,300	13	160	
	AM	AM										
	AM PM	AM										
TEST REPORTING	UNITS:		pH Units	mg/l	umho/cm	mg/l	mg/l	ug/L	ug/L	ug/L	ug/L	
TEST METHOD DETECTION LIMIT:			1.0 - 1.3	1.0	1.6	-	2.4	5.7	0.057	0.4		
TEST METHOD USED:			Portable field meter	SM2540D	SM2510B	1664A	-	EPA 200.8	EPA 200.8	EPA 200.8	EPA 200.8	
ANALYZED BY (SE		Self	Test America	Test America	Test America		Test America	Test America	Test America	Test America		

TSS - Total Suspended Solids

SC - Specific Conductance

O&G - Oil & Grease

^{*}Additional parameters not required by the IGP, including copper and nickel (all discharge locations) and pesticides (locations SW-3 and SW-4/5/6/7), are included in Attachment C.

^{**}Estimate; exact discharge start time unknown.

SECOND STORM EVENT

If analytical results are less than the detection limit (or non detectable), show the value as less than the numerical value of the detection limit (example: <.05)

If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank

When analysis is done using portable analysis (such as portable pH meters, SC meters, etc.), indicate "PA" in the appropriate test method used box. Make additional copies of this form as necessary.

NAME OF PERSON COLLECTING SAMPLE(S): Mary Cunningham TITLE:	Senior Staff Engineer SIGNATURE: _	12 Commence
---	------------------------------------	-------------

			ANALYTICAL RESULTS For Second Storm Event										
DESCRIBE DISCHARGE	DATE/TIME OF SAMPLE	TIME DISCHARGE		BAS	IC PARAMET	ERS		OTHER PARAMETERS*					
LOCATION Example: NW Out Fall	COLLECTION STARTED		рН	TSS	SC	O&G	TOC	Aluminum	Iron	Lead	Zinç		
TS1-E	12/02/14	AM PM	6.85	14	200	< 1.5	-	140	170	0.73	23		
SW-3		AM PM	7.31	120	890	< 1.9	as .	950	2,100	7.7	100		
SW-3 Duplicate	12/02/14 X AM 11:45 PM	AM PM	7.31	120	900	< 1.5	-	1,000	2,100	7.6	100		
SW-4/5/6/7		early AM**	6.80	79	220	< 1.5		830	1,300	7.5	96		
TEST REPORTING	UNITS:		pH Units	mg/l	umho/cm	mg/l	mg/l	ug/L	ug/L	ug/L	ug/L		
TEST METHOD DETECTION LIMIT:			NA/	1.0 - 5.0	1.0	1.5 - 1.9	-	34	5.8	0.034	1.9		
TEST METHOD USED:			Portable field meter	SM2540D	SM2510B	1664A	-	EPA 200.8	EPA 200.8	EPA 200.8	EPA 200.8		
ANALYZED BY (SE	LF/LAB):		Self	Test America	Test America	Test America ™		Test America	Test America	Test America	Test America	_	

TSS - Total Suspended Solids

SC - Specific Conductance

O&G - Oil & Grease

^{*}Additional parameters not required by the IGP, including copper and nickel (all discharge locations) and pesticides (locations SW-3 and SW-4/5/6/7), are included in Attachment C.

^{**}Estimate; exact discharge start time unknown.

SECOND STORM EVENT

If analytical results are less than the detection limit (or non detectable), show the value as less than the numerical value of the detection limit (example: <.05)

If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank

When analysis is done using portable analysis (such as portable pH meters, SC meters, etc.), indicate "PA" in the appropriate test method used box.

Make additional copies of this form as necessary.

NAME OF PERSON COLLECTING SAMPLE(S): Mary Cunningham	TITLE: Senior Staff Engineer	SIGNATURE:	
--	------------------------------	------------	--

								L RESULT				
DESCRIBE DISCHARGE	DATE/TIME OF SAMPLE	TIME DISCHARGE	BASIC PARAMETERS					OTHER PARAMETERS*				
LOCATION Example: NW Out Fall	COLLECTION	STARTED	рН	TSS	SC	O&G	TOC	Aluminum	Iron	Lead	Zinc	
SW-11	12/02/14 ※ AM 10:55 □ PM	AM PM	6.71	17	2,400	< 1.5	**	130	250	1.2	27	
SW-12	12/02/14 AM 	AM AM**	7.49	23	76	< 1.4	uer	580	1,300	6.6	75	
	AM PM	AM										
	AM PM	AM										
TEST REPORTING	UNITS:		pH Units	mg/l	umho/cm	mg/l	mg/l	ug/L	ug/L	ug/L	ug/L	
TEST METHOD DE	TECTION LIMIT:		- 0.83 - 1.0 1.0 1.4 - 1.5 - 34 5.8 0.034					1.9				
TEST METHOD US	ED:		Portable field meter	SM2540D	SM2510B	1664A	-	EPA 200.8	EPA 200.8	EPA 200.8	EPA 200.8	
ANALYZED BY (SE	LF/LAB):		Self	Test America	Test America	Test America		Test America	Test America	Test America	Test America	

TSS - Total Suspended Solids

SC - Specific Conductance

O&G - Oil & Grease

^{*}Additional parameters not required by the IGP, including copper and nickel (all discharge locations) and pesticides (locations SW-3 and SW-4/5/6/7), are included in Attachment C.

^{**}Estimate; exact discharge start time unknown.

T₁ | STORM EVENT

If analytical results are less than the detection limit (or non detectable), show the value as less than the numerical value of the detection limit (example: <.05)

If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank

When analysis is done using portable analysis (such as portable pH meters, SC meters, etc.), indicate "PA" in the appropriate test method used box. Make additional copies of this form as necessary.

NAME OF PERSON COLLECTING SAMPLE(S): Mary Cunningham	TITLE: Senior Staff Engineer	SIGNATURE:	
--	------------------------------	------------	--

								L RESULTS				
DESCRIBE DISCHARGE	DATE/TIME OF SAMPLE	TIME DISCHARGE		BAS	IC PARAMET	ERS			TERS∂'			
LOCATION Example: NW Out Fall	COLLECTION	STARTED	pН	TSS	SC	O&G	TOC	Aluminum	Iron	Lead	Zinc	
TS1-E	12/11/14	<u></u> 8:50 □ PM	7.37	24	170	1.8 J	w	600	350	2.0	60	
SW-3	12/11/14 X AM 8:40 PM	<u>8:40</u> ☐ PM	7.82	280	3,100	2.5 J		2,700	3,700	10	170	
SW-4/5/6/7	12/11/14	8 <u>:40</u> AM	7.61	20	540	1.2 J		480 J	430	1.9 J	91	
SW-11		<u>8:40</u> ☐ PM	7.65	39	20,000	1.2 Ј	86	240 J	540	1.6 J	84	
TEST REPORTING	UNITS:		pH Units	mg/l	umho/cm	mg/l	mg/l	ug/L	ug/L	ug/L	ug/L	
TEST METHOD DE	TECTION LIMIT:		0.100	1.0 - 5.0	1.0 - 2.0	0.57 - 0.64	-	170	29	0.17	9.5	
TEST METHOD US	SED:		9040B SM2540D SM2510B 1664A - EPA 200.8 EPA 200.8 EPA					EPA 200.8	EPA 200.8			
ANALYZED BY (SELF/LAB):			Test America	Test America	Test America	Test America ™		Test America	Test America	Test America	Test America	

TSS - Total Suspended Solids

SC - Specific Conductance

O&G - Oil & Grease

^{*}Additional parameters not required by the IGP, including copper and nickel (all discharge locations) and pesticides (locations SW-3 and SW-4/5/6/7), are included in Attachment C.

T₁ | STORM EVENT

If analytical results are less than the detection limit (or non detectable), show the value as less than the numerical value of the detection limit (example: <.05)

If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank

When analysis is done using portable analysis (such as portable pH meters, SC meters, etc.), indicate "PA" in the appropriate test method used box. Make additional copies of this form as necessary.

NAME OF PERSON COLLECTING SAMPLE(S): Mary Cunningham	TITLE: Senior Staff Engineer	SIGNATURE:	And the second s
--	------------------------------	------------	--

							L RESULT						
DESCRIBE DISCHARGE	DATE/TIME OF SAMPLE	TIME DISCHARGE	BASIC PARAMETERS					ОТН	IER PARAME	TERS∂			
LOCATION Example: NW Out Fall	COLLECTION	STARTED	STARTED	pН	TSS	SC	O&G	TOC	Aluminum	Iron	Lead	Zinc	
SW-11 Duplicate	12/11/14	I AM 8:40 □ PM	7.66	39	20,000	< 0.58	w	250 Ј	530	1.8 J	87		
SW-12	12/11/14	<u> </u>	7.62	36	69	1.3 J	VW	840	1,700	10	110		
	AM	AM											
	AM	AM											
TEST REPORTING	UNITS:		pH Units	mg/l	umho/cm	mg/l	mg/l	ug/L	ug/L	ug/L	ug/L		
TEST METHOD DE	TECTION LIMIT:		0.100	1.3	1.0 - 2.0	0.55 - 0.58		170	29	0.17	9.5		
TEST METHOD US	SED:		9040B SM2540D SM2510B 1664A - EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.					EPA 200.8					
ANALYZED BY (SE								Test America					

TSS - Total Suspended Solids

SC - Specific Conductance

O&G - Oil & Grease

^{*}Additional parameters not required by the IGP, including copper and nickel (all discharge locations) and pesticides (locations SW-3 and SW-4/5/6/7), are included in Attachment C.

¬ L J | -• STORM EVENT

If analytical results are less than the detection limit (or non detectable), show the value as less than the numerical value of the detection limit (example: <.05)

If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank

When analysis is done using portable analysis (such as portable pH meters, SC meters, etc.), indicate "PA" in the appropriate test method used box. Make additional copies of this form as necessary.

NAME OF PERSON COLLECTING SAMPLE(S): Mary Cunningham	TITLE: Senior Staff Engineer	_ SIGNATURE:
--	------------------------------	--------------

								L RESULT				
DESCRIBE DISCHARGE	DATE/TIME OF SAMPLE	TIME DISCHARGE		BAS	IC PARAMET	ERS			TERS			
LOCATION Example: NW Out Fall	COLLECTION	STARTED	pН	TSS	SC	O&G	TOC	Aluminum	Iron	Lead	Zinc	
TS1-E	2/6/15 ☐ AM 1:50 ☑ PM	☐ AM 1:45 🗷 PM	7.70	8.4	1,500	1.4 J	**	230	180	1.4	92	
SW-11	AM AM 	☐ AM 2:15 🖼 PM	7.54	10	52,000	0.85 J	-	< 100	230	0.27 Ј	210	
SW-12	2/6/15 ☐ AM 2:05 🕱 PM	☐ AM unknow ☐ PM	7.22	55	1,100	2.7 J	MA	1,900	3,600	15	240	
	AM PM	AM										
TEST REPORTING	UNITS:		pH Units	mg/l	umho/cm	mg/l	mg/l	ug/L	ug/L	ug/L	ug/L	
TEST METHOD DE	TECTION LIMIT:		0.100	0.53 - 2.3	1.0 - 10	0.56 - 0.57	-	100	5.8	0.034	1.9	
TEST METHOD US	SED:		9040B SM2540D SM2510B 1664A - EPA 200.8 EPA 200.8 EPA 200.8					EPA 200.8	EPA 200.8			
ANALYZED BY (SELF/LAB):			Test America	Test America	Test America	Test America		Test America	Test America	Test America	Test America	

TSS - Total Suspended Solids

SC - Specific Conductance

O&G - Oil & Grease

^{*}Additional parameters not required by the IGP, including copper and nickel, are included in Attachment C.

ANNUAL REPORT

FORM 3-QUARTERLY VISUAL OBSERVATIONS OF <u>UNAUTHORIZED</u> NON-STORM WATER DISCHARGES (NSWDs)

Unauthorized NSWDs are discharges (such as wash or rinse waters) that do not meet the conditions provided in Section D (pages 5-6) of the General Permit.

Quarterly visual observations are required to observe current and detect prior unauthorized NSWDs.

Quarterly visual observations are required during dry weather and at all facility drainage areas.

Each unauthorized NSWD source, impacted drainage area, and discharge location must be identified and observed.

Unauthorized NSWDs that can not be eliminated within 90 days of observation must be reported to the Regional Board in accordance with Section A.10.e of the General Permit.

Make additional copies of this form as necessary.

QUARTER: JULY-SEPT.	Observers Name: Mary Cunningham	WERE UNAUTHORIZED		If YES to either
DATE/TIME OF		NSWDs OBSERVED?	YES NO	question,
OBSERVATIONS	Title: Senior Staff Engineer	WEDE THERE INDICATIONS OF		complete
9/5/2014 8:40	Signature:	WERE THERE INDICATIONS OF PRIOR UNAUTHORIZED NSWDs?	☐YES ☒NO	reverse side.
QUARTER: OCTDEC.	Many Commission			If YES to
DATE/TIME OF	Observers Name: Mary Cunningham	WERE UNAUTHORIZED	☐ YES 🛣 NO	either
OBSERVATIONS	Title: Senior Staff Engineer	NSWDs OBSERVED?	☐ TES MINO	question,
	personal consequences of a final service of the ser	WERE THERE INDICATIONS OF		complete reverse
12/10/2014 9:40 PM	Signature:	PRIOR UNAUTHORIZED NSWDs?	☐ YES INO	side.
QUARTER: JANMARCH	Observed Mary Cunningham	W555		If YES to
	Observers Name: Mary Cunningham	WERE UNAUTHORIZED	□ves ™NO	either
DATE/TIME OF	_	WERE UNAUTHORIZED NSWDs OBSERVED?	☐YES 図NO	either question,
DATE/TIME OF OBSERVATIONS	Title: Senior Staff Engineer	NSWDs OBSERVED? WERE THERE INDICATIONS OF	_	either
DATE/TIME OF OBSERVATIONS	_	NSWDs OBSERVED?	_	either question, complete
DATE/TIME OF OBSERVATIONS	Title: Senior Staff Engineer Signature:	NSWDs OBSERVED? WERE THERE INDICATIONS OF PRIOR UNAUTHORIZED NSWDs?	_	either question, complete reverse
DATE/TIME OF OBSERVATIONS 2/25/2015 1:30 AM PM QUARTER: APRIL-JUNE	Title: Senior Staff Engineer	NSWDs OBSERVED? WERE THERE INDICATIONS OF PRIOR UNAUTHORIZED NSWDs? WERE UNAUTHORIZED	☐YES ※NO	either question, complete reverse side. If YES to either
DATE/TIME OF OBSERVATIONS 2/25/2015 1:30 AM PM	Title: Senior Staff Engineer Signature:	NSWDs OBSERVED? WERE THERE INDICATIONS OF PRIOR UNAUTHORIZED NSWDs?	_	either question, complete reverse side. If YES to either question,
DATE/TIME OF OBSERVATIONS 2/25/2015 1:30 AM PM QUARTER: APRIL-JUNE DATE/TIME OF	Title: Senior Staff Engineer Signature:	NSWDs OBSERVED? WERE THERE INDICATIONS OF PRIOR UNAUTHORIZED NSWDs? WERE UNAUTHORIZED	☐YES ※NO	either question, complete reverse side. If YES to either

FORM 3 QUARTERLY VISUAL OBSERVATIONS OF <u>UNAUTHORIZED</u> NON-STORM WATER DISCHARGES (NSWDs)

OBSERVATION DATE (FROM REVERSE SIDE)	NAME OF UNAUTHORIZED NSWD	SOURCE AND LOCATION OF UNAUTHORIZED NSWD	DESCRIBE UNAUTHORIZED NSWD CHARACTERISTICS Indicate whether unauthorized NSWD is clear, cloudy, discolored, causing stains; contains floating objects or an oil sheen, has odors, etc.		DESCRIBE CORRECTIVE ACTIONS TO ELIMINATE UNAUTHORIZED NSWD AND TO CLEAN IMPACTED DRAINAGE AREAS. PROVIDE UNAUTHORIZED NSWD ELIMINATION DATE.
	Vehicle Wash Water	NW Corner of Parking Lot	AT THE UNAUTHORIZED NSWD SOURCE	AT THE UNAUTHORIZED NSWD AREA AND DISCHARGE LOCATION	NOW ELIMINATION DATE.
9/5/2014	No NSWD				
8:45 X AM PM					
12/10/2014	No NSWD				
9:40 ※ AM □ PM					
2/25/2015	No NSWD				
1:30 ☐ AM ☑ PM					
6/15/2015	No NSWD				
<u>9:30</u> ※ AM ☐ PM					

2014 - 2015

ANNUAL REPORT

FORM 4 - MONTHLY VISUAL OBSERVATIONS OF STORM WATER DISCHARGES

- Storm water discharge visual observations are required for at least one storm event per month between October 1 and May 31.
- Visual observations must be conducted during the first hour of discharge at all discharge locations.
- Discharges of temporarily stored or contained storm water must be observed at the time of discharge.
 Indicate "None" in the first column of this form if you did not conduct a monthly visual observation.

- Make additional copies of this form as necessary.
- Until a monthly visual observation is made, record any eligible storm events that do not result in a storm water discharge and note the date, time, name, and title of who observed there was no storm water discharge.

		Drainage Location Description:	SW-1	SW-2	TS1-E	SW-3	SW-4	SW-5	SW-6	SW-7	SW-4/5/6/7	SW-11	SW-12
Observation Date:	October 31, 2014	Observation Time:		-				-					
Observer's Name:	Mary Cunningham	Time Discharge Began:	No discharge	No discharge	No discharge	No discharge	No discharge	No discharge	No discharge	No discharge	No discharge	No discharge	No discharge
Title:	Senior Staff Engineer	Approximate storm start date and time:					N	lo qualified storm eve	ent in October 2014.		1	1	
Signature:	The officers	Were Pollutants Observed (if yes, complete reverse side):	No	No	No	No	No	No	No	No	No	No	No
Observations Date:	November 20, 2014	Observation Time:		-	1:00 PM	2:30 PM					2:45 PM	3:00 PM	4:50 PM
Observer's Name:	Mary Cunningham	Time Discharge Began:	No discharge ⁽¹⁾	No discharge ⁽¹⁾	1:55 PM	2:35 PM	No discharge (2)	No discharge (2)	No discharge (2)	No discharge (2)	1:30 PM	1:30 PM	Unknown (3)
Title:	Senior Staff Engineer	Approximate storm start date and					•	Evening of Nove	mber 19, 2014.		1	1	
Signature:	The Commission	Were Pollutants Observed (if yes, complete reverse side):	No ⁽¹⁾	No ⁽¹⁾	Yes	Yes	No ⁽²⁾	No ⁽²⁾	No ⁽²⁾	No ⁽²⁾	Yes	Yes	Yes
Observations Date:	December 2, 2014	Observation Time:			12:20 PM	11:40 AM	-		-		11:30 AM	10:55 AM	1:00 PM
Observer's Name:	Mary Cunningham	Time Discharge Began:	No discharge ⁽¹⁾	No discharge ⁽¹⁾	Early AM, unknown ⁽⁴⁾	Early AM, unknown ⁽⁴⁾	No discharge (2)	No discharge (2)	No discharge (2)	No discharge (2)	Early AM, unknown (4)	Early AM, unknown (4)	Early AM, unknown (4)
Title:	Senior Staff Engineer	Approximate storm start date and time:					Ар	oproximately 2 AM o	n December 2, 2014.				
Signature:	To Landinomination	Were Pollutants Observed (if yes, complete reverse side):	No ⁽¹⁾	No ⁽¹⁾	Yes	Yes	No ⁽²⁾	No ⁽²⁾	No ⁽²⁾	No ⁽²⁾	Yes	Yes	Yes
Observations Date:	December 11, 2014	Observation Time:			9:45 AM	8:40 AM			-		8:46 AM	8:55 AM	9:10 AM
Observer's Name:	Mary Cunningham	Time Discharge Began:	No discharge ⁽¹⁾	No discharge ⁽¹⁾	8:50 AM	8:40 AM	No discharge (2)	No discharge ⁽²⁾	No discharge ⁽²⁾	No discharge (2)	8:40 AM	8:40 AM	9:00 AM
Title:	Senior Staff Engineer	Approximate storm start date and time:						Early morning of De	ecember 11, 2014.				
Signature:	The 10 miles and the second	Were Pollutants Observed (if yes, complete reverse side):	No ⁽¹⁾	No ⁽¹⁾	Yes	Yes	No ⁽²⁾	No ⁽²⁾	No ⁽²⁾	No ⁽²⁾	Yes	Yes	Yes
Observations Date:	January 31, 2015	Observation Time:											
Observer's Name:	Mary Cunningham	Time Discharge Began:	No discharge	No discharge	No discharge	No discharge	No discharge	No discharge	No discharge	No discharge	No discharge	No discharge	No discharge
Title:	Senior Staff Engineer	Approximate storm start date and time:					N	lo qualified storm eve	ent in January 2015.		•	•	
Signature:	The Commission	Were Pollutants Observed (if yes, complete reverse side):	No	No	No	No	No	No	No	No	No	No	No
Observations Date:	February 6, 2015	Observation Time:			1:50 PM							2:15 PM	2:05 PM
Observer's Name:	Mary Cunningham	Time Discharge Began:	No discharge ⁽¹⁾	No discharge ⁽¹⁾	1:45 PM	No discharge	No discharge (2)	No discharge ⁽²⁾	No discharge (2)	No discharge (2)	No discharge	2:13 PM	Unknown ⁽³⁾
Title:	Senior Staff Engineer	Approximate storm start date and time:						Early morning of F	ebruary 6, 2015.				
Signature:		Were Pollutants Observed (if yes, complete reverse side):	No ⁽¹⁾	No ⁽¹⁾	Yes	No	No ⁽²⁾	No ⁽²⁾	No ⁽²⁾	No ⁽²⁾	No	Yes	Yes
Observations Date:	March 31, 2015	Observation Time:											
Observer's Name:	Mary Cunningham	Time Discharge Began:	No discharge	No discharge	No discharge	No discharge	No discharge	No discharge	No discharge	No discharge	No discharge	No discharge	No discharge
Title:	Senior Staff Engineer	Approximate storm start date and time:	No obsuled Storic event in Marca 2015										
Signature:	The Lawrence	Were Pollutants Observed (if yes, complete reverse side):	No	No	No	No	No	No	No	No	No	No	No

Form 4 - Monthly Visual Observations of Storm Water Discharges

Observations Date:	April 7, 2015	Observation Time:			9:10 AM						9:30 AM	9:45 AM	
Observer's Name:	Mary Cunningham	Time Discharge Began:	No discharge ⁽¹⁾	No discharge ⁽¹⁾	6:40 AM ⁽⁵⁾	No discharge ⁽⁶⁾	No discharge (2)	No discharge (2)	No discharge (2)	No discharge (2)	9:30 AM ^(6,7)	9:45 AM	No discharge
Title:	Senior Staff Engineer	Approximate storm start date and time:						Approximately 1 AM	l on April 7, 2015.				
Signature:	The Harmonian	Were Pollutants Observed (if yes, complete reverse side):	1/10	No	Yes	No	No	No	No	No	Yes	Yes	No
Observations Date:	May 29, 2015	Observation Time:		-							-		
Observer's Name:	Scott Bourne	Time Discharge Began:	No discharge	No discharge	No discharge	No discharge	No discharge	No discharge	No discharge	No discharge	No discharge	No discharge	No discharge
Title:	Principal Engineer	Approximate storm start date and time:						No qualified storm e	vent in May 2015.				
Signature:	Sut bourse	Were Pollutants Observed (if yes, complete reverse side):		No	No	No	No	No	No	No	No	No	No

⁽¹⁾ Storm water from interceptors SW-1 and SW-2 routed to treatment system. See TS1-E for discharge from treatment system.

⁽²⁾ Storm water from interceptors SW-4, SW-5, SW-6, and SW-7 combined in sedimentation tank at SW-5 prior to discharge; see SW-4/5/6/7 for discharge information.

⁽³⁾ Sample collected from storage tank prior to outflow. Sample represents discharge.

⁽⁴⁾ Discharge began prior to business hours on December 2, 2014.

⁽⁵⁾ Exact start of discharge unknown. Operator started TS-1 treatment system at 0640 on 4/7/15.

⁽⁶⁾ Beginning in April 2015, discharge from interceptor SW-3 is routed to the combined sedimentation tank at SW-5. Discharge from the aboveground tank at SW-5 represents the combined discharge from SW-3 through SW-7.

⁽⁷⁾ The discharge valve from interceptor SW-5 was found to be leaking at 0920 on 4/7/15; exact start time of discharge unknown.

Form 4 - Monthly Visual Observations of Storm Water Discharges

2014 - 2015 ANNUAL REPORT DRM 4 (continued) - MONTHLY VISUAL OBSERVATIONS OF STORM WATER DISCHARGES

		FORM	4 (continued) - MONTHLY VISUAL OBSERVATIONS OF S	TORM WATER DISCHAF	RGES
		Drainage Location Description:	Describe Storm Water Discharge Characteristics Indicate whether storm water discharge is clear, cloudy, or discolored; causing staining, containing floating objects or an oil sheen, has odors, etc.	Identify and Describe Source(s) of Pollutants	Describe any revised or new BMPs and their date of implementation
Observation Date and Time:	November 20, 2014, 1:00 PM	TS1-E	Discharge was tan with light turbidity. No solids, staining, odor, or sheen observed.	Not identified	Addition of biopolymer flocculant at treatment system TS-1 was implemented for the 2014-2015 storm season. The following additional BMPs were implemented across the site: -Updated site sweeping plan on/around 10/15/14Installed and test global positioning system for sweepers on/around 10/15/14Installed and test articulating head on single sweeping system to improve sweeping on rail track on/around 10/1/14Installed second covered, telescoping conveyor with drip pans on/around 10/1/14Established track out prevention zone and facility exits including rumble strip and delineated area on/around 10/1/14Installed weather station with alarm to track precipitation, wind speed and other parameters on/around 12/31/14.
Observation Date and Time:	November 20, 2014, 2:30 PM	SW-3	Discharge was dark gray/black, highly turbid, with some suspended solids. No staining, odor, or sheen observed.	Bulk product storage in the SW-3 catchment area.	Construction of treatment system TS-2 anticipated before 2015-2016 rainy season.
Observation Date and Time:	November 20, 2014, 2:45 PM	SW-4/5/6/7	Discharge was light gray/brown, lightly turbid, and contained minimal suspended solids. No staining, odor, or sheen observed.	Not identified	Storm water from catchment areas SW-4, SW-6, and SW-7 pumped to interceptor SW-5 beginning in the 2014-2015 storm season. Combined storm water is pumped to sedimentation tank for increased solids removal prior to discharge. Construction of treatment system TS-2 anticipated before 2015-2016 rainy season.
Observation Date and Time:	November 20, 2014, 3:00 PM	SW-11	Discharge was gray with minor suspended solids. No staining, odor, sheen, or significant turbidity observed.	Not identified	
Observation Date and Time:	November 20, 2014, 4:50 PM	SW-12	Discharge was gray/brown with minor suspended solids. No staining, odor, sheen, or significant turbidity observed.	Not identified	Construction of treatment system TS-3 anticipated before 2015-2016 rainy season.
Observation Date and Time:	December 2, 2014, 12:20 PM	TS1-E	Discharge was tan with some turbidity. No solids, staining, odor, or sheen observed.	Not identified	
Observation Date and Time:	December 2, 2014, 11:40 AM	SW-3	Discharge was dark gray and turbid. No solids, staining, odor, or sheen observed.	Bulk product storage/handling in the SW-3 catchment area.	Construction of treatment system TS-2 anticipated before 2015-2016 rainy season.
Observation Date and Time:	December 2, 2014, 11:30 AM	SW-4/5/6/7	Discharge was gray, lightly turbid, and contained minimal suspended solids. No staining, odor, or sheen observed.	Not identified	Construction of treatment system TS-2 anticipated before 2015-2016 rainy season.
Observation Date and Time:	December 2, 2014, 10:55 AM	SW-11	Discharge was clear/lightly gray with some turbidity. No solids, staining, odor, sheen, or significant turbidity observed.	Not identified	
Observation Date and Time:	December 2, 2014, 1:00 PM	SW-12	Discharge was clear with no noticeable turbidity. No solids, staining, odor, sheen, or significant turbidity observed.	Not identified	Construction of treatment system TS-3 anticipated before 2015-2016 rainy season.
Observation Date and Time:	December 11, 2014, 9:45 AM	TS1-E	Discharge was light tan with no noticeable turbidity. No solids, staining, odor, or sheen observed.	Not identified	
Observation Date and Time:	December 11, 2014, 8:40 AM	SW-3	Discharge was tan/gray and moderately turbid. No solids, staining, odor, or sheen observed.	Not identified	Construction of treatment system TS-2 anticipated before 2015-2016 rainy season.
Observation Date and Time:	December 11, 2014, 8:46 AM	SW-4/5/6/7	Discharge was clear/light tan with no noticeable turbidity. No solids, staining, odor, or sheen observed.	Not identified	Construction of treatment system TS-2 anticipated before 2015-2016 rainy season.

6/30/2015 3 of 4 402 Wright Avenue, Richmond, California

Form 4 - Monthly Visual Observations of Storm Water Discharges

2014 - 2015 ANNUAL REPORT FORM 4 (continued) - MONTHLY VISUAL OBSERVATIONS OF STORM WATER DISCHARGES

FORM 4 (continued) - MONTHLY VISUAL OBSERVATIONS OF STORM WATER DISCHARGES								
		Drainage Location Description:	Describe Storm Water Discharge Characteristics Indicate whether storm water discharge is clear, cloudy, or discolored; causing staining, containing floating objects or an oil sheen, has odors, etc.	Identify and Describe Source(s) of Pollutants	Describe any revised or new BMPs and their date of implementation			
Observation Date and Time:	December 11, 2014, 8:55 AM	SW-11	Discharge was tan/gray with some turbidity. No solids, staining, odor, or sheen observed.	Not identified				
Observation Date and Time:	December 11, 2014, 9:10 AM	SW-12	Discharge was gray with medium turbidity. No solids, staining, odor, or sheen observed.	Not identified	Construction of treatment system TS-3 anticipated before 2015-2016 rainy season.			
Observation Date and Time:	February 6, 2015, 1:50 PM	TS1-E	Discharge was very clear. No color, turbidity, solids, staining, odor, or sheen observed.	Not identified				
Observation Date and Time:	February 6, 2015, 2:15 PM	SW-11	Discharge was very clear. No color, turbidity, solids, staining, odor, or sheen observed.	Not identified				
Observation Date and Time:	February 6, 2015, 2:05 PM	SW-12	Discharge was gray with light turbidity. No solids, staining, odor, or sheen was observed.	Not identified	Construction of treatment system TS-3 anticipated before 2015-2016 rainy season.			
Observation Date and Time:	April 7, 2015, 9:10 AM	TS1-E	Discharge was gray/tan with slight turbidity. No solids, staining, odor, or sheen was observed.	Not identified				
Observation Date and Time:	April 7, 2015, 9:30 AM	SW-3/4/5/6/7	Discharge was gray/brown and cloudy/turbid. A slight petroleum odor was noted. No solids, staining, or sheen was observed.	Not identified	Storm water from catchment area SW-3 was routed to the aboveground sedimentation tank at SW-5 in April 2015. Storm water from interceptors SW-3 through SW-7 is combined in the sedimentation tank for increased solids removal prior to discharge. Construction of treatment system TS-2 anticipated before 2015-2016 rainy season. Discharge valve on SW-5 is routinely checked and repaired as needed.			
Observation Date and Time:	April 7, 2015, 9:450 AM	SW-11	Discharge was dark gray and almost opaque with turbidity. A slight petroleum odor was noted. No solids, staining, or sheen was observed.	Green coke in South Parr Yard				

6/30/2015 4 of 4 402 Wright Avenue, Richmond, California

FORM 5-ANNUAL COMPREHENSIVE SITE COMPLIANCE EVALUATION POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY BMP STATUS

EVALUATION DATE: 6/15/15 INS	SPECTOR NAME: Scott Bourne		TITLE	Princpal Engineer SIGN	Stat bourse
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP) SW1, SW2, SW6	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED?	□YES ⊠NO	If yes, to either question, complete the next two columns of this form	Describe deficiencies in BMPs or BMP implementation No deficiences	Describe additional/revised BMPs or corrective actions and their date(s) of implementation
	ARE ADDITIONAL/REVISED BMPs NECESSARY?	□YES ☑NO			
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP) SW3, B-berth loading area	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED?	MYES □NO	If yes, to either question, complete the next two columns of this form	Describe deficiencies in BMPs or BMP implementation Tarp beneath conveyor partially out of place.	Describe additional/revised BMPs or corrective actions and their date(s) of implementation Reposition tarp immediately and recommunicate BMP maintenance
	ARE ADDITIONAL/REVISED BMPs NECESSARY?	□YES ※NO			requirements to maintenance supervisor by 6/16/15.
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP) SW4, stockpile area	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED?	MYES □NO	If yes, to either question, complete the next two columns of this form	Describe deficiencies in BMPs or BMP implementation Straw wattle at exterior of jackwall partially out of place.	Describe additional/revised BMPs or corrective actions and their date(s) of implementation Reposition straw wattle and recommunicate BMP maintenance
	ARE ADDITIONAL/REVISED BMPs NECESSARY?	□YES ※ NO			requirements to maintenance supervisor by 6/30/15.
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP) SW5, equipment storage agrea	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED?	MYES □NO	If yes, to either question, complete the next two columns of this form	Describe deficiencies in BMPs or BMP implementation Pile of dust/debris from manual sweeping near location of SW-5 tanks was not cleaned up.	Describe additional/revised BMPs or corrective actions and their date(s) of implementation Remove sweeping dust/debris pile and recommunicate housekeeping
	ARE ADDITIONAL/REVISED YBMPs NECESSARY?				requirements to maintenance supervisor by 6/30/15.

FORM 5 (Continued)-ANNUAL COMPREHENSIVE SITE COMPLIANCE EVALUATION POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY BMP STATUS

EVALUATION DATE: 6/15/15 INSF	PECTOR NAME: Scott Bourne		TITLE:	Principal Engineer SIGN	ATURE:
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP) SW7, equipment and parts storage area	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED?	≚YES □NO	If yes, to either question, complete the next two	Describe deficiencies in BMPs or BMP implementation Tarp over railroad ties was torn and partially out of place.	Describe additional/revised BMPs or corrective actions and their date(s) of implementation Replace tarp and recommunicate BMP maintenance requirements to maintenance
	ARE ADDITIONAL/REVISED BMPs NECESSARY?	□YES ⋉NO	columns of this form		supervisor by 6/30/15.
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP) SW10, stockpile area	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED?	∭YES □NO	If yes, to either question, complete the next two columns of this	Describe deficiencies in BMPs or BMP implementation Inadequate sweeping along west edge of stockpile area.	Describe additional/revised BMPs or corrective actions and their date(s) of implementation Re-sweep along west edge of stockpile area immediately and re-communicate
	ARE ADDITIONAL/REVISED BMPs NECESSARY?	□YES ☑NO	form		daily sweeping requirements to maintenance supervisor.
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP) SW12, equipment storage area	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED?	MYES □NO	If yes, to either question, complete the next two	Describe deficiencies in BMPs or BMP implementation Empty paint can and trailer with debris located in uncovered area.	Describe additional/revised BMPs or corrective actions and their date(s) of implementation Place paint cans under cover, sweep trailer and recommunciate BMP requirements to
	ARE ADDITIONAL/REVISED BMPs NECESSARY?	□YES ☑NO	columns of this form		maintenance supervisor by 6/30/15.
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP) NA	HAVE ANY BMPs NOT BEEN YE FULLY IMPLEMENTED?		If yes, to either question, complete the next two	Describe deficiencies in BMPs or BMP implementation	Describe additional/revised BMPs or corrective actions and their date(s) of implementation
	ARE ADDITIONAL/REVISED BMPs NECESSARY?	□YES □NO	columns of this form		

ATTACHMENT B

ADDITIONAL EXPLANATIONS

2014-2015 Annual Report Storm Water Discharges Associated with Industrial Activities Levin Richmond Terminal Corporation Additional Explanations

- **E.5.** During each of the four storm events, samples were collected from each location that produced discharge. As a result, only a subset of the potential discharge locations were sampled during each event.
- **E.6.** Samples were collected during the first hour of discharge during two of the four qualified storm events sampled, on December 11, 2014 and February 6, 2015. Exact discharge start times were unknown during the first qualified storm event of the year (November 20, 2014); samples were collected between approximately five minutes and an hour and half after discharge at each location. During the storm event on December 2, 2014, samples were collected after the first hour of discharge.
- <u>G.1.</u> No qualified storm events occurred during scheduled work hours in October 2014, January 2015, March 2015, April 2015 and May 2015.

ATTACHMENT C

ANALYTICAL DATA

Table 1. 2014-2015 Annual Storm Water Sampling Data for General Parameters and Metals

Discharge Location	Notes	Hd ·	Specific Conductance	Trotal Oil and Grease	E Total Suspended	β γ Aluminum	Σ/Copper	Iron µg/L	Λ Γead	Nickel γ'βμ	π Zinc	m T Residual Chitosan ^{d,e}
TS1-I ^a 11/20/2014 12/2/2014 12/11/2014 2/6/2015		8.95 6.87 7.43 8.31	160 		210 J 230 J 120 550	2,700 1,600 3,200 4,600	50 11 9.0 41	7,900 3,000 2,200 7,700	100 19 10 55	14 4.5 3.7 18	790 200 J 130 820	
TS1-E 11/20/2014 12/2/2014 12/11/2014 2/6/2015		7.82 6.85 7.37 7.70	1,000 200 170 1,500	< 4.9 < 5.5 1.8 < 5.2	12 14 J 24 8.4	160 140 600 230	7.5 0.89 2.8 2.3	310 J 170 J 350 180	5.5 0.73 2.0 1.4	2.3 0.5 < 15 1.6	240 J 23 60 J 92	< 0.1 < 0.1 < 0.1 < 0.1
SW-3 11/20/2014 12/2/2014 12/2/2014 12/11/2014	Duplicate	6.92 7.31 7.31 7.82	3,500 890 900 3,100	< 5.6 < 6.6 < 5.2 2.5	190 120 120 120 J 280	1,300 950 1,000 2,700	14 7.6 7.4 13	J 2,600 2,100 2,100 3,700	9.6 1 7.7 7.6 10	3.3 3.2	J 210 100 100 J 170	
SW-4/5/6/7 11/20/2014 11/20/2014 12/2/2014 12/11/2014	Duplicate	7.71 7.71 6.80 7.61	230 230 220 540	< 5.5 < 5.5 < 5.2 1.2	10 9.0 79 J 20	160 190 830 480	26 27 8.9 J 5.7	670 700 1,300 430	11 12 7.5 1.9	4.9 5.0 2.9 J < 15	400 410 J 96 91	
S PARR SW-11 11/20/2014 12/2/2014 12/11/2014 12/11/2014 2/6/2015	Duplicate	6.78 6.71 7.65 7.66 7.54	8,500 2,400 20,000 20,000 52,000	< 5.7 < 5.4 1.2 < 5.3 < 5.3	30 17 J 39 39 10	170 130 240 250 < 100	5.1 2.2 J 5.5 J 5.2 2.9	410 250 540 530 230	3.0 1.2 1.6 1.8 0.27	J 6.0	65 J 27 J 84 J 87 210	
N PARR SW-12 11/20/2014 12/2/2014 12/11/2014 2/6/2015		8.01 7.49 7.62 7.22	160 76 69 1,100	< 5.6 < 5.1 1.3 < 5.2	12 23 J 36 55	710 580 840 1,900	27 9.1 11 25	2,300 1,300 1,700 3,600	13 6.6 10 15	12 6.6 6.0 25	160 75 J 110 240	
SHEET-1 ^b 12/11/2014					79							
SHEET-2° 12/2/2014 12/11/2014		7.88			2.1 51							

Notes:

Acronyms/Abbreviations:

--- = not analyzed
J = concentration reported is an estimated value

< n =not detected above the reporting limit

mg/L = milligrams per liter

^a TS1-I is the combined influent from interceptors SW-1 and SW-2 and does not represent discharge. It is used to evaluate TS-1 effectiveness.

^bSHEET-1 is a sheet flow sample collected between the Track Out Prevention Zone at the Main Yard entrance gate and the public right-of-way.

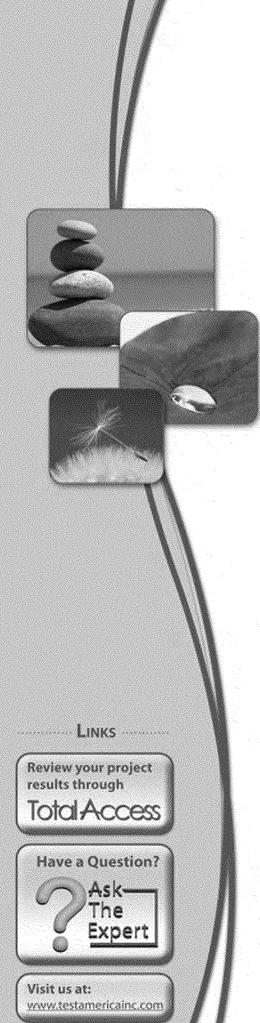
cSHEET-2 is a sheet flow sample collected between the Track Out Prevention Zone at the South Parr Yard entrance gate and the public right-of-way.

 $^{^{\}rm d} Residual\ chitosan\ field\ tested\ using\ StormKlear\ Halo Source\ HS-SOP-505\ 1-02\ colorimetric\ method\ unless\ otherwise\ noted.$

[°]Residual chitosan result verified by CEL Analytical of San Francisco, CA using StormKlear HaloSource HS-SOP-5051-02 method.

Table 2. 2014-2015 Annual Storm Water Sampling Data for Pesticides

	Notes	π 4,4'-DDD	ர் 4,4'-DD E	ரீ 4,4'-DDT	րն A ldrin	ர் alpha-BHC	ர் alpha-Chlordane	т Т рега-ВНС	T ^g n Chlordane	ղջ delta-BHC	T Dieldrin	T B ndosulfan I	ال Endosulfan II	ர் Transparation sulfate	Togu Train	ர் ந drin aldehyde	ர் ர gamma-BHC (Lindane)	ர் gamma-Chlordane ா	T T	ಗ್ Heptachlor epoxide	ന് ന് T	ர் Toxaphene
SW-3 11/20/2014 12/2/2014 12/2/2014 12/11/2014	Duplicate	<0.0019 0.0028 0.0025 0.0023	< 0.0019 0.014 0.014 < 0.0022	< 0.0019 0.019 0.019 0.039	< 0.0019 < 0.0020 < 0.0019 < 0.0022	< 0.096 < 0.097 < 0.097 < 0.095	< 0.0019 < 0.0020 < 0.0019 < 0.0022	< 0.096 < 0.097 < 0.097 < 0.095	< 0.96 < 0.97 < 0.97 < 0.95	< 0.096 < 0.097 < 0.097 < 0.095	< 0.0019 < 0.0020 < 0.0019 < 0.0022	< 0.096 < 0.097 < 0.097 0.030	< 0.096 < 0.097 < 0.097 < 0.095	< 0.096 < 0.097 < 0.097 < 0.095	< 0.0019 < 0.0020 < 0.0019 < 0.0022	< 0.096 < 0.097 < 0.097 < 0.095	< 0.0019 < 0.0020 < 0.0019 < 0.0022	< 0.0019 < 0.0020 < 0.0019 < 0.0022	0.0016 < 0.0020 < 0.0019 < 0.0022	< 0.0019 < 0.0020 < 0.0019 < 0.0022	< 0.096 < 0.097 < 0.097 < 0.095	< 0.024 < 0.025 < 0.024 < 0.027
SW-4/5/6/7 11/20/2014 11/20/2014 12/2/2014 12/11/2014	Duplicate	<0.0019 <0.0019 <0.0019 0.0033	< 0.0019 < 0.0019 < 0.0019 < 0.0019	0.020 0.022 0.0035 0.0049	< 0.0019 < 0.0019 < 0.0019 < 0.0019	< 0.096 < 0.10 < 0.096 < 0.095	< 0.0019 < 0.0019 < 0.0019 < 0.0019	< 0.096 < 0.10 < 0.096 < 0.095	< 0.96 < 1.0 < 0.96 < 0.95	< 0.096 < 0.10 < 0.096 < 0.095	< 0.0019 < 0.0019 < 0.0019 < 0.0019	0.042 0.039 < 0.096 < 0.095	< 0.096 < 0.10 < 0.096 < 0.095	< 0.096 < 0.10 < 0.096 < 0.095	0.011 0.012 < 0.0019 < 0.0019	< 0.096 < 0.10 < 0.096 < 0.095	< 0.0019 < 0.0019 < 0.0019 < 0.0019	< 0.096 < 0.10 < 0.096 < 0.095	< 0.024 < 0.024 < 0.024 < 0.024			


Notes:

Detected concentrations of pesticides are displayed in **bold**.

Acronyms/Abbreviations:

 $J = concentration \ reported \ is \ an \ estimated \ value \\ TPH = total \ petroleum \ hydrocarbons \\ \mu g/L = micrograms \ pet \ liter$

< n =not detected above the reporting limit USEPA = United States Environmental Protection Agency

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-61467-1

Client Project/Site: LRT 2014-2015 Annual Stormwater

For:

Weiss Associates 2200 Powell Street Suite 925 Emeryville, California 94608

Attn: Mr. Scott Bourne

Mint R 5 Smit

Authorized for release by: 12/3/2014 6:49:21 PM

Micah Smith, Project Manager II (925)484-1919

micah.smith@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

ED_000946_Recollect_00330313-00075

3

4

.

9

11

13

1 2

Ta	h		∽ f	0	nte	nte
ıa	DI	e	OT	LO	nte	nts

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
QC Sample Results	13
QC Association Summary	15
Lab Chronicle	17
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22
Receipt Chacklists	23

Definitions/Glossary

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater

TestAmerica Job ID: 720-61467-1

Qualifiers

Metals

Qualifier	Qualifier Description

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater

Job ID: 720-61467-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-61467-1

Comments

No additional comments.

Receipt

The samples were received on 11/21/2014 3:10 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 0.3° C, 0.4° C and 1.2° C.

Except:

The container label for the following sample did not match the information listed on the Chain-of-Custody (COC): TS1-E-112014 (720-61467-1). The container labels list the sampled time of 14:15, while the COC lists the sampled time of 13:15. As requested by Mary Cunningham on 12/1/14, the sample was logged in with the sampled time of 14:15.

Sample TS1-E-112014 (720-61467-1) was collected in an improper container for TSS. We received one 500 ml bottle but we should receive a 1 liter bottle for TSS. We were able to perform the analysis with the volume supplied but in the future a 1 liter bottle should be received.

Metals

Method(s) 200.8: Sample SW-3-112014 (720-61467-5) was diluted prior to digestion due to the sample matrix. The samples had a dark brown color with significant amounts of sediment present.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method(s) 1664A: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with batch 221725.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TestAmerica Pleasanton

Detection Summary

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater

Lab Sample ID: 720-61467-1

TestAmerica Job ID: 720-61467-1

Client Sample	ID: TS	1-E-11	2014
---------------	--------	--------	------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	160		30	2.4	ug/L	1	_	200.8	Total
									Recoverable
Copper	7.5		2.0	0.27	ug/L	1		200.8	Total
									Recoverable
Iron	310		50	5.7	ug/L	1		200.8	Total
									Recoverable
Nickel	2.3		1.0	0.093	ug/L	1		200.8	Total
									Recoverable
Lead	5.5	В	1.0	0.057	ug/L	1		200.8	Total
									Recoverable
Zinc	240		5.0	0.40	ug/L	1		200.8	Total
									Recoverable
Total Suspended Solids	12		3.3	1.7	mg/L	1		SM 2540D	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Specific Conductance	1000		1.0	1.0	umhos/cm	1	_	SM 2510B	Total/NA

Client Sample ID: SW-4/5/6/7-112014

Lab Sample ID: 720-61467-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	160		30	2.4	ug/L	1	_	200.8	Total
									Recoverable
Copper	26		2.0	0.27	ug/L	1		200.8	Total
									Recoverable
Iron	670		50	5.7	ug/L	1		200.8	Total
									Recoverable
Nickel	4.9		1.0	0.093	ug/L	1		200.8	Total
									Recoverable
Lead	11	В	1.0	0.057	ug/L	1		200.8	Total
									Recoverable
Zinc	400		5.0	0.40	ug/L	1		200.8	Total
									Recoverable
Total Suspended Solids	10		2.0	1.0	mg/L	1		SM 2540D	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Specific Conductance	230		1.0	1.0	umhos/cm	1		SM 2510B	Total/NA

Client Sample ID: SW-4/5/6/7-112014-DUP

Lab Sample ID: 720-61467-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	190		30	2.4	ug/L	1		200.8	Total
									Recoverable
Copper	27		2.0	0.27	ug/L	1		200.8	Total
									Recoverable
Iron	700		50	5.7	ug/L	1		200.8	Total
									Recoverable
Nickel	5.0		1.0	0.093	ug/L	1		200.8	Total
									Recoverable
Lead	12	В	1.0	0.057	ug/L	1		200.8	Total
									Recoverable
Zinc	410		5.0	0.40	ug/L	1		200.8	Total
									Recoverable
Total Suspended Solids	9.0		1.7	0.83	mg/L	1		SM 2540D	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Specific Conductance	230		1.0	1.0	umhos/cm	1		SM 2510B	Total/NA

This Detection Summary does not include radiochemical test results.

Detection Summary

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater

Lab Sample ID: 720-61467-4

TestAmerica Job ID: 720-61467-1

Client Sam	ple IE): SW-	11-1	12014
------------	--------	--------	------	-------

Analyte	Result C	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	170		30	2.4	ug/L	1	_	200.8	Total
									Recoverable
Copper	5.1		2.0	0.27	ug/L	1		200.8	Total
									Recoverable
Iron	410		50	5.7	ug/L	1		200.8	Total
									Recoverable
Nickel	4.4		1.0	0.093	ug/L	1		200.8	Total
									Recoverable
Lead	3.0 E	3	1.0	0.057	ug/L	1		200.8	Total
									Recoverable
Zinc	65		5.0	0.40	ug/L	1		200.8	Total
									Recoverable
Total Suspended Solids	30		2.5	1.3	mg/L	1		SM 2540D	Total/NA
Analyte	Result C	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Specific Conductance	8500		1.0	1.0	umhos/cm	1		SM 2510B	Total/NA

Client Sample ID: SW-3-112014

Lab Sample ID: 720-61467-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	1300		300	24	ug/L	1	_	200.8	Total
									Recoverable
Copper	14	J	20	2.7	ug/L	1		200.8	Total
									Recoverable
Iron	2600		500	57	ug/L	1		200.8	Total
									Recoverable
Nickel	6.5	J	10	0.93	ug/L	1		200.8	Total
									Recoverable
Lead	9.6	JB	10	0.57	ug/L	1		200.8	Total
									Recoverable
Zinc	210		50	4.0	ug/L	1		200.8	Total
									Recoverable
Total Suspended Solids	190		18	9.1	mg/L	1		SM 2540D	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Specific Conductance	3500		1.0	1.0	umhos/cm	1	_	SM 2510B	Total/NA

Client Sample ID: SW-12-112014

Lab Sample ID: 720-61467-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	710		30	2.4	ug/L	1		200.8	Total
									Recoverable
Copper	27		2.0	0.27	ug/L	1		200.8	Total
									Recoverable
Iron	2300		50	5.7	ug/L	1		200.8	Total
									Recoverable
Nickel	12		1.0	0.093	ug/L	1		200.8	Total
									Recoverable
Lead	13	В	1.0	0.057	ug/L	1		200.8	Total
									Recoverable
Zinc	160		5.0	0.40	ug/L	1		200.8	Total
									Recoverable
Total Suspended Solids	12		2.0	1.0	mg/L	1		SM 2540D	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Specific Conductance	160		1.0	1.0	umhos/cm	1		SM 2510B	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater

Client Sample ID: TS1-E-112014 Lab Sample ID: 720-61467-1

Date Collected: 11/20/14 14:15 Matrix: Water

Date Received: 11/21/14 15:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	160		30	2.4	ug/L		11/26/14 05:59	11/28/14 16:24	1
Copper	7.5		2.0	0.27	ug/L		11/26/14 05:59	11/28/14 16:24	1
Iron	310		50	5.7	ug/L		11/26/14 05:59	11/28/14 16:24	1
Nickel	2.3		1.0	0.093	ug/L		11/26/14 05:59	11/28/14 16:24	1
Lead	5.5	В	1.0	0.057	ug/L		11/26/14 05:59	11/28/14 16:24	1
Zinc	240		5.0	0.40	ug/L		11/26/14 05:59	11/28/14 16:24	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
SGT-HEM	ND		4.9	1.4	mg/L		12/01/14 10:52	12/01/14 15:06	1
Total Suspended Solids	12		3.3	1.7	mg/L			11/25/14 15:39	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Specific Conductance	1000		1.0	1.0	umhos/cm			12/01/14 08:00	1

TestAmerica Pleasanton

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater

Client Sample ID: SW-4/5/6/7-112014 Lab Sample ID: 720-61467-2

Date Collected: 11/20/14 14:45 Matrix: Water

Date Received: 11/21/14 15:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	160		30	2.4	ug/L		11/26/14 05:59	11/28/14 16:28	1
Copper	26		2.0	0.27	ug/L		11/26/14 05:59	11/28/14 16:28	1
Iron	670		50	5.7	ug/L		11/26/14 05:59	11/28/14 16:28	1
Nickel	4.9		1.0	0.093	ug/L		11/26/14 05:59	11/28/14 16:28	1
Lead	11	В	1.0	0.057	ug/L		11/26/14 05:59	11/28/14 16:28	1
Zinc	400		5.0	0.40	ug/L		11/26/14 05:59	11/28/14 16:28	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
SGT-HEM	ND		5.5	1.5	mg/L		12/01/14 10:52	12/01/14 15:06	1
Total Suspended Solids	10		2.0	1.0	mg/L			11/25/14 15:39	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Specific Conductance	230		1.0	1.0	umhos/cm			12/01/14 08:00	1

TestAmerica Pleasanton

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater

Client Sample ID: SW-4/5/6/7-112014-DUP Lab Sample ID: 720-61467-3

Date Collected: 11/20/14 14:50 Matrix: Water

Date Received: 11/21/14 15:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	190		30	2.4	ug/L		11/26/14 05:59	11/28/14 16:31	1
Copper	27		2.0	0.27	ug/L		11/26/14 05:59	11/28/14 16:31	1
Iron	700		50	5.7	ug/L		11/26/14 05:59	11/28/14 16:31	1
Nickel	5.0		1.0	0.093	ug/L		11/26/14 05:59	11/28/14 16:31	1
Lead	12	В	1.0	0.057	ug/L		11/26/14 05:59	11/28/14 16:31	1
Zinc	410		5.0	0.40	ug/L		11/26/14 05:59	11/28/14 16:31	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
SGT-HEM	ND		5.5	1.5	mg/L		12/01/14 10:52	12/01/14 15:06	1
Total Suspended Solids	9.0		1.7	0.83	mg/L			11/25/14 15:39	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Specific Conductance	230		1.0	1.0	umhos/cm			12/01/14 08:00	1

TestAmerica Pleasanton

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater

Client Sample ID: SW-11-112014 Lab Sample ID: 720-61467-4

Date Collected: 11/20/14 15:00 Matrix: Water

Date Received: 11/21/14 15:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	170		30	2.4	ug/L		11/26/14 05:59	11/28/14 16:35	1
Copper	5.1		2.0	0.27	ug/L		11/26/14 05:59	11/28/14 16:35	1
Iron	410		50	5.7	ug/L		11/26/14 05:59	11/28/14 16:35	1
Nickel	4.4		1.0	0.093	ug/L		11/26/14 05:59	11/28/14 16:35	1
Lead	3.0	В	1.0	0.057	ug/L		11/26/14 05:59	11/28/14 16:35	1
Zinc	65		5.0	0.40	ug/L		11/26/14 05:59	11/28/14 16:35	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
SGT-HEM	ND		5.7	1.6	mg/L		12/01/14 10:52	12/01/14 15:06	1
Total Suspended Solids	30		2.5	1.3	mg/L			11/25/14 15:39	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Specific Conductance	8500		1.0	1.0	umhos/cm			12/01/14 08:00	1

TestAmerica Pleasanton

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater

Client Sample ID: SW-3-112014 Lab Sample ID: 720-61467-5

Date Collected: 11/20/14 15:35 Matrix: Water

Date Received: 11/21/14 15:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1300		300	24	ug/L		11/26/14 05:59	11/28/14 16:51	1
Copper	14	J	20	2.7	ug/L		11/26/14 05:59	11/28/14 16:51	1
Iron	2600		500	57	ug/L		11/26/14 05:59	11/28/14 16:51	1
Nickel	6.5	J	10	0.93	ug/L		11/26/14 05:59	11/28/14 16:51	1
Lead	9.6	JB	10	0.57	ug/L		11/26/14 05:59	11/28/14 16:51	1
Zinc	210		50	4.0	ug/L		11/26/14 05:59	11/28/14 16:51	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
SGT-HEM	ND		5.6	1.6	mg/L		12/01/14 10:52	12/01/14 15:06	1
Total Suspended Solids	190		18	9.1	mg/L			11/25/14 15:39	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Specific Conductance	3500		1.0	1.0	umhos/cm			12/01/14 08:00	1

TestAmerica Pleasanton

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater

Client Sample ID: SW-12-112014 Lab Sample ID: 720-61467-6

Date Collected: 11/20/14 16:50 Matrix: Water

Date Received: 11/21/14 15:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	710		30	2.4	ug/L		11/26/14 05:59	11/28/14 16:55	1
Copper	27		2.0	0.27	ug/L		11/26/14 05:59	11/28/14 16:55	1
Iron	2300		50	5.7	ug/L		11/26/14 05:59	11/28/14 16:55	1
Nickel	12		1.0	0.093	ug/L		11/26/14 05:59	11/28/14 16:55	1
Lead	13	В	1.0	0.057	ug/L		11/26/14 05:59	11/28/14 16:55	1
Zinc	160		5.0	0.40	ug/L		11/26/14 05:59	11/28/14 16:55	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
SGT-HEM	ND		5.6	1.6	mg/L		12/01/14 10:52	12/01/14 15:06	1
Total Suspended Solids	12		2.0	1.0	mg/L			11/25/14 15:39	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Specific Conductance	160		1.0	1.0	umhos/cm			12/01/14 08:00	1

TestAmerica Pleasanton

QC Sample Results

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 180-126509/1-A

Analysis Batch: 126709

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total Recoverable

TestAmerica Job ID: 720-61467-1

Prep Batch: 126509

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		30	2.4	ug/L		11/26/14 05:59	11/28/14 13:43	1
Copper	ND		2.0	0.27	ug/L		11/26/14 05:59	11/28/14 13:43	1
Iron	ND		50	5.7	ug/L		11/26/14 05:59	11/28/14 13:43	1
Nickel	ND		1.0	0.093	ug/L		11/26/14 05:59	11/28/14 13:43	1
Lead	0.131	J	1.0	0.057	ug/L		11/26/14 05:59	11/28/14 13:43	1
Zinc	ND		5.0	0.40	ug/L		11/26/14 05:59	11/28/14 13:43	1

Lab Sample ID: LCS 180-126509/2-A

Matrix: Water

Analysis Batch: 126709

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Prep Batch: 126509

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	2000	1890		ug/L		94	85 - 115	
Copper	250	274		ug/L		110	85 _ 115	
Iron	1000	1030		ug/L		103	85 _ 115	
Nickel	500	529		ug/L		106	85 _ 115	
Lead	20.0	22.1		ug/L		110	85 - 115	
Zinc	500	559		ug/L		112	85 _ 115	

Lab Sample ID: LCSD 180-126509/3-A

Matrix: Water

Client Sample ID: Lab Control Sample Dup

Prep Type: Total Recoverable

Prep Batch: 126509 Analysis Batch: 126709 LCSD LCSD Spike %Rec. RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit 2000 1790 Aluminum ug/L 89 85 - 115 5 20 250 85 _ 115 Copper 266 ug/L 107 20 3 Iron 1000 1010 ug/L 101 85 - 115 20 Nickel 500 517 103 85_115 2 20 ug/L Lead 20.0 21.6 ug/L 108 85 _ 115 2 20 Zinc 500 544 ug/L 109 85 _ 115 20

Method: 1664A - HEM and SGT-HEM

Lab Sample ID: MB 440-221725/1-A

Matrix: Water

Analysis Batch: 221794

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 221725

мв мв Dil Fac Result Qualifier RI MDL Unit Prepared Analyte Analyzed 5.0 12/01/14 10:52 SGT-HEM ND 1.4 mg/L 12/01/14 15:06

Lab Sample ID: LCS 440-221725/2-A

Matrix: Water

Analysis Batch: 221794

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 221725

Spike LCS LCS %Rec. Added Result Qualifier Analyte Unit %Rec Limits SGT-HEM 10.0 7.80 78 70 - 110 mg/L

QC Sample Results

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater

Method:	1664A -	HEM	and	SGT-HEM	(Continued)
---------	---------	-----	-----	---------	-------------

Lab Sample ID: LCSD 440-221725/3-A Client Sample ID: Lab Control Sample Dup

Spike

Matrix: Water

Prep Type: Total/NA Analysis Batch: 221794

Prep Batch: 221725

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

RPD

TestAmerica Job ID: 720-61467-1

%Rec.

Unit Analyte Added Result Qualifier Limit D %Rec Limits RPD SGT-HEM 10.0 8.60 mg/L 86 70 - 110 10 15

LCSD LCSD

Method: SM 2510B - Conductivity, Specific Conductance

Lab Sample ID: MB 440-221679/3 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 221679

MB MB

RL **RL** Unit Dil Fac Analyte Result Qualifier D Prepared Analyzed 1.0 Specific Conductance 1.0 umhos/cm 12/01/14 08:00 ND

Lab Sample ID: LCS 440-221679/4 Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 221679

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Specific Conductance 780 umhos/cm 102 90 - 110

Lab Sample ID: 720-61467-2 DU Client Sample ID: SW-4/5/6/7-112014

Matrix: Water

Analysis Batch: 221679

DU DU RPD Sample Sample Analyte Result Qualifier Result Qualifier Unit RPD Limit Specific Conductance 230 233 5 umhos/cm

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 440-220975/2 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 220975

мв мв

Result Qualifier RL MDL Unit Dil Fac Analyte D Prepared Analyzed Total Suspended Solids ND 1.0 0.50 mg/L 11/25/14 15:39

Lab Sample ID: LCS 440-220975/1 Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 220975

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits **Total Suspended Solids** 1000 1030 ma/L 103 85 _ 115

QC Association Summary

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater

TestAmerica Job ID: 720-61467-1

M	eta	Is

Prep	Batch:	126509
------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-61467-1	TS1-E-112014	Total Recoverable	Water	200.8	
720-61467-2	SW-4/5/6/7-112014	Total Recoverable	Water	200.8	
720-61467-3	SW-4/5/6/7-112014-DUP	Total Recoverable	Water	200.8	
720-61467-4	SW-11-112014	Total Recoverable	Water	200.8	
720-61467-5	SW-3-112014	Total Recoverable	Water	200.8	
720-61467-6	SW-12-112014	Total Recoverable	Water	200.8	
LCS 180-126509/2-A	Lab Control Sample	Total Recoverable	Water	200.8	
LCSD 180-126509/3-A	Lab Control Sample Dup	Total Recoverable	Water	200.8	
MB 180-126509/1-A	Method Blank	Total Recoverable	Water	200.8	

Analysis Batch: 126709

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-61467-1	TS1-E-112014	Total Recoverable	Water	200.8	126509
720-61467-2	SW-4/5/6/7-112014	Total Recoverable	Water	200.8	126509
720-61467-3	SW-4/5/6/7-112014-DUP	Total Recoverable	Water	200.8	126509
720-61467-4	SW-11-112014	Total Recoverable	Water	200.8	126509
720-61467-5	SW-3-112014	Total Recoverable	Water	200.8	126509
720-61467-6	SW-12-112014	Total Recoverable	Water	200.8	126509
LCS 180-126509/2-A	Lab Control Sample	Total Recoverable	Water	200.8	126509
LCSD 180-126509/3-A	Lab Control Sample Dup	Total Recoverable	Water	200.8	126509
MB 180-126509/1-A	Method Blank	Total Recoverable	Water	200.8	126509

General Chemistry

Analysis Batch: 220975

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-61467-1	TS1-E-112014	Total/NA	Water	SM 2540D	
720-61467-2	SW-4/5/6/7-112014	Total/NA	Water	SM 2540D	
720-61467-3	SW-4/5/6/7-112014-DUP	Total/NA	Water	SM 2540D	
720-61467-4	SW-11-112014	Total/NA	Water	SM 2540D	
720-61467-5	SW-3-112014	Total/NA	Water	SM 2540D	
720-61467-6	SW-12-112014	Total/NA	Water	SM 2540D	
LCS 440-220975/1	Lab Control Sample	Total/NA	Water	SM 2540D	
MB 440-220975/2	Method Blank	Total/NA	Water	SM 2540D	

Analysis Batch: 221679

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
720-61467-1	TS1-E-112014	Total/NA	Water	SM 2510B	
720-61467-2	SW-4/5/6/7-112014	Total/NA	Water	SM 2510B	
720-61467-2 DU	SW-4/5/6/7-112014	Total/NA	Water	SM 2510B	
720-61467-3	SW-4/5/6/7-112014-DUP	Total/NA	Water	SM 2510B	
720-61467-4	SW-11-112014	Total/NA	Water	SM 2510B	
720-61467-5	SW-3-112014	Total/NA	Water	SM 2510B	
720-61467-6	SW-12-112014	Total/NA	Water	SM 2510B	
LCS 440-221679/4	Lab Control Sample	Total/NA	Water	SM 2510B	
MB 440-221679/3	Method Blank	Total/NA	Water	SM 2510B	

Prep Batch: 221725

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-61467-1	TS1-E-112014	Total/NA	Water	1664A	

QC Association Summary

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater

TestAmerica Job ID: 720-61467-1

General Chemistry (Continued)

Prep Batch: 221725 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-61467-2	SW-4/5/6/7-112014	Total/NA	Water	1664A	
720-61467-3	SW-4/5/6/7-112014-DUP	Total/NA	Water	1664A	
720-61467-4	SW-11-112014	Total/NA	Water	1664A	
720-61467-5	SW-3-112014	Total/NA	Water	1664A	
720-61467-6	SW-12-112014	Total/NA	Water	1664A	
LCS 440-221725/2-A	Lab Control Sample	Total/NA	Water	1664A	
LCSD 440-221725/3-A	Lab Control Sample Dup	Total/NA	Water	1664A	
MB 440-221725/1-A	Method Blank	Total/NA	Water	1664A	

Analysis Batch: 221794

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-61467-1	TS1-E-112014	Total/NA	Water	1664A	221725
720-61467-2	SW-4/5/6/7-112014	Total/NA	Water	1664A	221725
720-61467-3	SW-4/5/6/7-112014-DUP	Total/NA	Water	1664A	221725
720-61467-4	SW-11-112014	Total/NA	Water	1664A	221725
720-61467-5	SW-3-112014	Total/NA	Water	1664A	221725
720-61467-6	SW-12-112014	Total/NA	Water	1664A	221725
LCS 440-221725/2-A	Lab Control Sample	Total/NA	Water	1664A	221725
LCSD 440-221725/3-A	Lab Control Sample Dup	Total/NA	Water	1664A	221725
MB 440-221725/1-A	Method Blank	Total/NA	Water	1664A	221725

Lab Chronicle

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater

Lab Sample ID: 720-61467-1

TestAmerica Job ID: 720-61467-1

Matrix: Water

Client Sample ID: TS1-E-112014

Date Collected: 11/20/14 14:15 Date Received: 11/21/14 15:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	200.8			126509	11/26/14 05:59	SLB	TAL PIT
Total Recoverable	Analysis	200.8		1	126709	11/28/14 16:24	WTR	TAL PIT
Total/NA	Prep	1664A			221725	12/01/14 10:52	AMR	TAL IRV
Total/NA	Analysis	1664A		1	221794	12/01/14 15:06	AMR	TAL IRV
Total/NA	Analysis	SM 2510B		1	221679	12/01/14 08:00	XL	TAL IRV
Total/NA	Analysis	SM 2540D		1	220975	11/25/14 15:39	NTN	TAL IRV

Client Sample ID: SW-4/5/6/7-112014

Date Collected: 11/20/14 14:45

Lab Sample ID: 720-61467-2

Matrix: Water

Date Received: 11/21/14 15:10

•	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	200.8			126509	11/26/14 05:59	SLB	TAL PIT
Total Recoverable	Analysis	200.8		1	126709	11/28/14 16:28	WTR	TAL PIT
Total/NA	Prep	1664A			221725	12/01/14 10:52	AMR	TAL IRV
Total/NA	Analysis	1664A		1	221794	12/01/14 15:06	AMR	TAL IRV
Total/NA	Analysis	SM 2510B		1	221679	12/01/14 08:00	XL	TAL IRV
Total/NA	Analysis	SM 2540D		1	220975	11/25/14 15:39	NTN	TAL IRV

Client Sample ID: SW-4/5/6/7-112014-DUP

Date Collected: 11/20/14 14:50

Matrix: Water

Lab Sample ID: 720-61467-3

Date Received: 11/21/14 15:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	200.8			126509	11/26/14 05:59	SLB	TAL PIT
Total Recoverable	Analysis	200.8		1	126709	11/28/14 16:31	WTR	TAL PIT
Total/NA	Prep	1664A			221725	12/01/14 10:52	AMR	TAL IRV
Total/NA	Analysis	1664A		1	221794	12/01/14 15:06	AMR	TAL IRV
Total/NA	Analysis	SM 2510B		1	221679	12/01/14 08:00	XL	TAL IRV
Total/NA	Analysis	SM 2540D		1	220975	11/25/14 15:39	NTN	TAL IRV

Client Sample ID: SW-11-112014

Date Collected: 11/20/14 15:00

Lab Sample ID: 720-61467-4

Matrix: Water

Date Received: 11/21/14 15:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	200.8			126509	11/26/14 05:59	SLB	TAL PIT
Total Recoverable	Analysis	200.8		1	126709	11/28/14 16:35	WTR	TAL PIT
Total/NA	Prep	1664A			221725	12/01/14 10:52	AMR	TAL IRV
Total/NA	Analysis	1664A		1	221794	12/01/14 15:06	AMR	TAL IRV
Total/NA	Analysis	SM 2510B		1	221679	12/01/14 08:00	XL	TAL IRV
Total/NA	Analysis	SM 2540D		1	220975	11/25/14 15:39	NTN	TAL IRV

Lab Chronicle

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater

Lab Sample ID: 720-61467-5

TestAmerica Job ID: 720-61467-1

Matrix: Water

Client Sample ID: SW-3-112014

Date Collected: 11/20/14 15:35 Date Received: 11/21/14 15:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	200.8			126509	11/26/14 05:59	SLB	TAL PIT
Total Recoverable	Analysis	200.8		1	126709	11/28/14 16:51	WTR	TAL PIT
Total/NA	Prep	1664A			221725	12/01/14 10:52	AMR	TAL IRV
Total/NA	Analysis	1664A		1	221794	12/01/14 15:06	AMR	TAL IRV
Total/NA	Analysis	SM 2510B		1	221679	12/01/14 08:00	XL	TAL IRV
Total/NA	Analysis	SM 2540D		1	220975	11/25/14 15:39	NTN	TAL IRV

Client Sample ID: SW-12-112014 Lab Sample ID: 720-61467-6

Date Collected: 11/20/14 16:50 Matrix: Water

Date Received: 11/21/14 15:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	200.8			126509	11/26/14 05:59	SLB	TAL PIT
Total Recoverable	Analysis	200.8		1	126709	11/28/14 16:55	WTR	TAL PIT
Total/NA	Prep	1664A			221725	12/01/14 10:52	AMR	TAL IRV
Total/NA	Analysis	1664A		1	221794	12/01/14 15:06	AMR	TAL IRV
Total/NA	Analysis	SM 2510B		1	221679	12/01/14 08:00	XL	TAL IRV
Total/NA	Analysis	SM 2540D		1	220975	11/25/14 15:39	NTN	TAL IRV

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Certification Summary

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater

TestAmerica Job ID: 720-61467-1

Laboratory: TestAmerica Pleasanton

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	State Program	9	2496	01-31-16

Laboratory: TestAmerica Irvine

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

luthority	Program		EPA Region	Certification ID	Expiration Date	
California	State Prog	State Program		2706	06-30-16	
The following analytes	are included in this report hu	t cartification is not offe	red by the governing s	authority:		
The following analytes	are included in this report, bu	t certification is not offe	red by the governing a	authority:		
The following analytes Analysis Method	are included in this report, bu Prep Method	t certification is not offe Matrix	red by the governing a Analy	•		

Laboratory: TestAmerica Pittsburgh

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date	
Arkansas DEQ	State Program	6	88-0690	06-27-15	
California	State Program	9	2891	03-31-15	
Connecticut	State Program	1	PH-0688	09-30-16	
Florida	NELAP	4	E871008	06-30-15	
Illinois	NELAP	5	002602	06-30-15	
Kansas	NELAP	7	E-10350	01-31-15	
Louisiana	NELAP	6	04041	06-30-15	
New Hampshire	NELAP	1	203011	04-04-15	
New Jersey	NELAP	2	PA005	06-30-15	
New York	NELAP	2	11182	03-31-15	
North Carolina (WW/SW)	State Program	4	434	12-31-14 *	
Pennsylvania	NELAP	3	02-00416	04-30-15	
South Carolina	State Program	4	89014	04-30-15	
Texas	NELAP	6	T104704528	03-31-15	
US Fish & Wildlife	Federal		LE94312A-1	11-30-15	
USDA	Federal		P330-10-00139	05-23-16	
Utah	NELAP	8	STLP	05-31-15	
Virginia	NELAP	3	460189	09-14-15	
West Virginia DEP	State Program	3	142	01-31-15	

^{*} Certification renewal pending - certification considered valid.

Method Summary

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater

Method Description Method Protocol Laboratory 200.8 Metals (ICP/MS) EPA TAL PIT 1664A HEM and SGT-HEM 1664A TAL IRV SM 2510B Conductivity, Specific Conductance SM TAL IRV SM 2540D Solids, Total Suspended (TSS) SM TAL IRV

Protocol References:

1664A = EPA-821-98-002

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater",

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022 TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

TestAmerica Pleasanton

Sample Summary

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater

TestAmerica Job ID: 720-61467-1

			-	
Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-61467-1	TS1-E-112014	Water	11/20/14 14:15	11/21/14 15:10
720-61467-2	SW-4/5/6/7-112014	Water	11/20/14 14:45	11/21/14 15:10
720-61467-3	SW-4/5/6/7-112014-DUP	Water	11/20/14 14:50	11/21/14 15:10
720-61467-4	SW-11-112014	Water	11/20/14 15:00	11/21/14 15:10
720-61467-5	SW-3-112014	Water	11/20/14 15:35	11/21/14 15:10
720-61467-6	SW-12-112014	Water	11/20/14 16:50	11/21/14 15:10

.	ત	69	4	ĽΩ	(i)	N	60	9)	19		2	<u>4</u>	Ź
--------------	---	----	---	----	-----	----------	----	------------	----	--	---	----------	---

720-61467

• · · · · ·	LIWI														Š
Chain of Custody Record						OR LAB PEF									ζ.
• •	Please send analytic results, ele					•		El No							
'estAmerica 220 Quarry √ne	original chain-of-custody form t labresults@weiss.com	0:	_			DD required? method and d	letection limit in								
leasanton, CA 94566	mec@weiss.com		-				n GC or other sc	-					12	57797	
hone: 925-484-1919 ext.137	sab@weiss.com ,		Cali	ımmedia	itely wit	h any question	s or problems								
Client Contact	Project Manager: Scott Bo		Protocol	m/path:	т	J \Levin Richmo	ond\03b_Sampling	1			г			COC Number:	
Veiss Associates		.01 Task 1.1.3	_		10	EM)			appear and a second				<u> </u>		
200 Powell Street, Suite 925	Sampled by: MEC		_	10B)	540	CT-HI Pb, Zn	-		***************************************					. 1	ſ
meryville, CA 94608	Sample date(s): 1[/20		- ;	X 25	SM	A SC Nt. P				1				Page of	1_
510) 450-6000 Phone	Analysis Turna	round Time:	la l	e (S)	spr (664 Fe,			-				-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
510) 547-5043 FAX		. ,	eg.	, kan	Sol	PA 1				ł			F	SDG number:	
ob Name: LRT 2014-2015 Annual Storm Water Sampling	Stan	lard	(M	ada,	ndec	Se (BE									
Levin Richmond Terminal, 402 Wright Avenue, Richmond, CA 94804	(Specify Days	or Hours)	trályte (Method ID)	Specific Conductance (SM 2510B)	Suspended Solids (SM 2540D)	Grease (EPA 1664A SGT-HEM) Metals- Al,Cu, Fe, Ni, Pb, Zn 200.8 ICP-MS)									
	Sampl		₹ 9)ecrf.	Total	On & Carl								Sample Specific Not	es:
Lab ID Sample Identification	Sample Date Time		nt. 3	- S	1	0,15%			_				_		
TS1-E-112014	11/20/14 131	5 4 5		V	V	VV									
SW-415167-11201	4 11/20/14 141	1 5		V	V	11							Pu		
sw-4/5/6/7-112014-5	NP 11/20/14 14:	70 5		U	1	VV									Ç
SW-11-12014	11/20/14 150			V	V	VV									<u></u>
SW-3-12014	11/20/14 153			V	V	VV		and a second							,
SW-12-12014	11/20/14 165			1	V	11/									
300 (2)	- 11 21 .	3										en italia in mana rea	 1 -		_
				 	-					-					
				}	╀										***************************************
		i i							1.						
,										11 7:	20-61467	7 Chain c	of Cust		***************************************
		Field Filtere	d OO:	11-	 					man.				-	***************************************
Preservation Used: 1= Ice, 2= HCl; 3= H ₂ SO ₄ ; 4	WNO. : 5=NaOH: 6= Other	4	1	. 1	1	1,2 1,4	1 1	1 1	1	1 1	1 1	111			
Special Instructions/QC Requirements & Comments		h reporting limit and		- 1	ł	1 1	1 1 . 1				1 1	1 1	and Zn	1)	
special fasti actions OC Requirements & Comments	LEVEL II Report Report wit	a reporting minit and	INICIATIA (A)	JUUTUUII	11171110	ranas ac an	a report only	, me mem		ı	1			·/·	
			MEr						0	4/0	1.3/1	í. که °	, 		
Relinquished by	Company		Receive	d by	7	>			C	ompany.			D	Date/Time 2	
Many Cunningham	x Weiss	11/20/14 1/04	£	تعك				·	0		7		/	1/21/14@ 10	25
telinguished by	Company	Date/Time: 15/	O Receive	d by	W				0	mpany	AP		9	11714 1510	
Relinquished by:	Company:	Date/Time	Receive	d by:						ompany			D	Date Time	
IVI - Complex selected to a convent incline	0				a 22 C	amplet ranair	d from a secure	d looked are	<u> </u>						

Login Sample Receipt Checklist

Client: Weiss Associates Job Number: 720-61467-1

Login Number: 61467 List Source: TestAmerica Pleasanton

List Number: 1 Creator: Bullock, Tracy

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	False	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

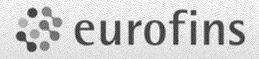
Login Sample Receipt Checklist

Client: Weiss Associates Job Number: 720-61467-1

List Source: TestAmerica Irvine
List Number: 2
List Creation: 11/25/14 02:28 PM

Creator: Salas, Margarita

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	


Login Sample Receipt Checklist

Client: Weiss Associates Job Number: 720-61467-1

List Source: TestAmerica Pittsburgh
List Number: 3
List Creation: 11/25/14 06:39 PM

Creator: Watson, Debbie

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Calscience

WORK ORDER NUMBER: 14-11-1863

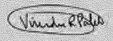
The difference is service

AIR SOIL WATER MARINE CHEMISTRY

Analytical Report For

Client: Weiss Associates

Client Project Name: LRT 2014-2015 Annual Storm Water


Sampling / 426-2026.01 Task 1.1.3

Attention: Scott Bourne

2200 Powell Street

Suite 925

Emeryville, CA 94608-1879

Approved for release on 12/02/2014 by:

Virendra Patel Project Manager

ResultLink >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way Carrien Grove CA 92841-1432 • TEL (714) 895-5494 • FAX (714) 894-7501 • www.calyclence.com

NELAPID 032700A LACIASS DAD FLAPID ADE 1864 (ISCHED 1702) 2005 L. CSDLAC ID. 10109 L. SCACMELID, 93/ADSOC

8

Contents

16

-	ect Name: er Number:	LRT 2014-2015 Annual Storm Water Sampling / 426-2026.01 Task 1.1.3 14-11-1863	
1	Work Ord	er Narrative	3
2	Sample S	ummary	4
3	Detection	s Summary	5
4	4.1 EPA	mple Data	6 6 8
5	-	ontrol Sample Data	12 12
6	Sample A	nalysis Summary	14
7	Glossary	of Terms and Qualifiers	15

Chain-of-Custody/Sample Receipt Form.....

Work Order Narrative

Work Order: 14-11-1863 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 11/22/14. They were assigned to Work Order 14-11-1863.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

New York NELAP air certification does not certify for all reported methods and analytes, reference the accredited items here: http://www.calscience.com/PDF/New_York.pdf

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Emeryville, CA 94608-1879

Sample Summary

Client: Weiss Associates 14-11-1863 Work Order:

LRT 2014-2015 Annual Storm Water Sampling / 426-2026.01 Task 1.1.3 2200 Powell Street, Suite 925 Project Name:

PO Number:

Date/Time 11/22/14 09:20

Received:

Number of 6 Containers:

Attn: Scott Bourne

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
SW-4/5/6/7-112014	14-11-1863-1	11/20/14 14:45	2	Aqueous
SW-4/5/6/7-112014-DUP	14-11-1863-2	11/20/14 14:50	2	Aqueous
SW-3-112014	14-11-1863-3	11/20/14 15:35	2	Aqueous

Detections Summary

Client: Weiss Associates

Work Order: Project Name: 14-11-1863

2200 Powell Street, Suite 925 Emeryville, CA 94608-1879

LRT 2014-2015 Annual Storm Water Sampling / 426-2026.01 Task 1.1.3

Received: 11/22/14

Attn: Scott Bourne Page 1 of 1

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	<u>Extraction</u>
SW-4/5/6/7-112014 (14-11-1863-1)						
4,4'-DDT	20		1.9	ng/L	EPA 8081A	EPA 3510C
Endosulfan I	0.042	J	0.027*	ug/L	EPA 8081A	EPA 3510C
Endrin	11		1.9	ng/L	EPA 8081A	EPA 3510C
SW-4/5/6/7-112014-DUP (14-11-1863-2)						
4,4'-DDT	22		1.9	ng/L	EPA 8081A	EPA 3510C
Endosulfan I	0.039	J	0.028*	ug/L	EPA 8081A	EPA 3510C
Endrin	12		1.9	ng/L	EPA 8081A	EPA 3510C
SW-3-112014 (14-11-1863-3)						
Heptachlor	1.6	J	0.35*	ng/L	EPA 8081A	EPA 3510C

Subcontracted analyses, if any, are not included in this summary.

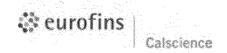
Page 1 of 2

Analytical Report

Weiss AssociatesDate Received:11/22/142200 Powell Street, Suite 925Work Order:14-11-1863

Emeryville, CA 94608-1879 Preparation: EPA 3510C Method: EPA 8081A

Units: ug/L


Project: LRT 2014-2015 Annual Storm Water Sampling / 426-

2026.01 Task 1.1.3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SW-4/5/6/7-112014	14-11-1863-1-B	11/20/14 14:45	Aqueous	GC 51	11/24/14	11/25/14 18:26	141124L03
Comment(s): - Results were evalu	uated to the MDL (DL), con	centrations >= t	to the MDL (DL	.) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resi	<u>ult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	2	<u>Qualifiers</u>
Alpha-BHC	ND		0.096	0.027	1.00		
Beta-BHC	ND		0.096	0.029	1.00		
Delta-BHC	ND		0.096	0.027	1.00		
Endosulfan I	0.04	2	0.096	0.027	1.00	j	I
Endrin Aldehyde	ND		0.096	0.025	1.00		
Endosulfan II	ND		0.096	0.026	1.00		
Endosulfan Sulfate	ND		0.096	0.028	1.00		
Methoxychlor	ND		0.096	0.024	1.00		
Chlordane	ND		0.96	0.32	1.00		
Surrogate	Rec	<u>(%)</u>	Control Limits	Qualifiers			
Decachlorobiphenyl	85		50-135				
2,4,5,6-Tetrachloro-m-Xylene	93		50-135				

SW-4/5/6/7-112014-DUP	14-11-1863-2-B 11/20/1 14:50	4 Aqueous	GC 51	11/24/14	11/25/14 141124L03 18:40
Comment(s): - Results were eval	uated to the MDL (DL), concentration	s >= to the MDL (DL)	but < RL (LOC), if found, are	qualified with a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Alpha-BHC	ND	0.10	0.028	1.00	
Beta-BHC	ND	0.10	0.030	1.00	
Delta-BHC	ND	0.10	0.029	1.00	
Endosulfan I	0.039	0.10	0.028	1.00	J
Endrin Aldehyde	ND	0.10	0.026	1.00	
Endosulfan II	ND	0.10	0.027	1.00	
Endosulfan Sulfate	ND	0.10	0.029	1.00	
Methoxychlor	ND	0.10	0.025	1.00	
Chlordane	ND	1.0	0.33	1.00	
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers		
Decachlorobiphenyl	83	50-135			
2,4,5,6-Tetrachloro-m-Xylene	89	50-135			

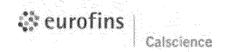
RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Analytical Report

Weiss AssociatesDate Received:11/22/142200 Powell Street, Suite 925Work Order:14-11-1863Emeryville, CA 94608-1879Preparation:EPA 3510C

Method: EPA 8081A Units: ug/L

Project: LRT 2014-2015 Annual Storm Water Sampling / 426Page 2 of 2


2026.01 Task 1.1.3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SW-3-112014	14-11-1863-3-B	11/20/14 15:35	Aqueous	GC 51	11/24/14	11/25/14 18:54	141124L03
Comment(s): - Results were evalu	ated to the MDL (DL), con	centrations >= t	o the MDL (Dl	_) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resi	<u>ult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	2	<u>Qualifiers</u>
Alpha-BHC	ND		0.096	0.027	1.00		
Beta-BHC	ND	•	0.096	0.029	1.00		
Delta-BHC	ND		0.096	0.027	1.00		
Endosulfan I	ND		0.096	0.027	1.00		
Endrin Aldehyde	ND		0.096	0.025	1.00		
Endosulfan II	ND		0.096	0.026	1.00		
Endosulfan Sulfate	ND		0.096	0.028	1.00		
Methoxychlor	ND		0.096	0.024	1.00		
Chlordane	ND	•	0.96	0.32	1.00		
Surrogate	Rec.	(%)	Control Limits	Qualifiers	1		
Decachlorobiphenyl	86	:	50-135				
2,4,5,6-Tetrachloro-m-Xylene	91	;	50-135				

Method Blank	099-12-529-	758 N/A	Aqueous G(51 11/		11/25/14 18:11	141124L03
Comment(s): - I	Results were evaluated to the MDL (DL), concentrations >=	to the MDL (DL) bu	t < RL (LOQ), if	found, are qu	alified with a	"J" flag.
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
Alpha-BHC		ND	0.10	0.028	1.00		
Beta-BHC		ND	0.10	0.030	1.00		
Delta-BHC		ND	0.10	0.029	1.00		
Endosulfan I		ND	0.10	0.028	1.00		
Endrin Aldehyde		ND	0.10	0.026	1.00		
Endosulfan II		ND	0.10	0.027	1.00		
Endosulfan Sulfate		ND	0.10	0.029	1.00		
Methoxychlor		ND	0.10	0.025	1.00		
Chlordane		ND	1.0	0.33	1.00		
<u>Surrogate</u>		Rec. (%)	Control Limits	Qualifiers			
Decachlorobiphenyl	I	88	50-135				
2,4,5,6-Tetrachloro-	-m-Xylene	93	50-135				

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Analytical Report

Weiss Associates 2200 Powell Street, Suite 925 Emeryville, CA 94608-1879

Date Received: Work Order: Preparation: Method:

14-11-1863 EPA 3510C **EPA 8081A**

11/22/14

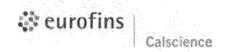
Units:

ng/L Page 1 of 4

Project: LRT 2014-2015 Annual Storm Water Sampling / 426-

2026.01 Task 1.1.3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SW-4/5/6/7-112014	14-11-1863-1-A	11/20/14 14:45	Aqueous	GC 44	11/25/14	11/29/14 14:19	141125L07
Comment(s): - Results were evaluated	to the MDL (DL), con	centrations >= t	o the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	Resi	<u>ult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
Aldrin	ND		1.9	0.31	1.00		


i didilictor	i todati	in L	IVIDE	<u> </u>	Qualificio
Aldrin	ND	1.9	0.31	1.00	
4,4'-DDD	ND	1.9	0.53	1.00	
4,4'-DDE	ND	1.9	0.46	1.00	
4,4'-DDT	20	1.9	0.53	1.00	
Alpha Chlordane	ND	1.9	0.47	1.00	
Dieldrin	ND	1.9	0.53	1.00	
Gamma Chlordane	ND	1.9	0.47	1.00	
Toxaphene	ND	24	7.9	1.00	
Endrin	11	1.9	0.30	1.00	
Gamma-BHC	ND	1.9	0.44	1.00	
Heptachlor	ND	1.9	0.35	1.00	
Heptachlor Epoxide	ND	1.9	0.33	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl	92	50-150			

Surrogate	Rec. (%)	Control Lim
Decachlorobiphenyl	92	50-150
2,4,5,6-Tetrachloro-m-Xylene	96	50-150

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

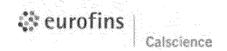
Page 2 of 4

Analytical Report

11/22/14 Date Received: Weiss Associates 2200 Powell Street, Suite 925 Work Order: 14-11-1863 EPA 3510C Emeryville, CA 94608-1879 Preparation:

> Method: **EPA 8081A**

> Units: ng/L


Project: LRT 2014-2015 Annual Storm Water Sampling / 426-2026.01 Task 1.1.3

2026.01 Task 1.1.3							
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SW-4/5/6/7-112014-DUP	14-11-1863-2-A	11/20/14 14:50	Aqueous	GC 44	11/25/14	11/29/14 14:33	141125L07
Comment(s): - Results were evaluated to	the MDL (DL), cond	entrations >= t	o the MDL (DL	.) but < RL (LOC	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u> <u></u>	<u>RL</u>	MDL	<u>DF</u>	2	<u>Qualifiers</u>
Aldrin	ND		1.9	0.31	1.00		
4,4'-DDD	ND		1.9	0.53	1.00		
4,4'-DDE	ND		1.9	0.46	1.00		
4,4'-DDT	22		1.9	0.53	1.00		
Alpha Chlordane	ND		1.9	0.47	1.00		
Dieldrin	ND	,	1.9	0.53	1.00		
Gamma Chlordane	ND		1.9	0.47	1.00		
Toxaphene	ND	:	24	7.9	1.00		
Endrin	12		1.9	0.30	1.00		
Gamma-BHC	ND		1.9	0.44	1.00		
Heptachlor	ND		1.9	0.35	1.00		
Heptachlor Epoxide	ND	,	1.9	0.33	1.00		
Surrogate	Rec.	<u>(%)</u>	Control Limits	Qualifiers			
Decachlorobiphenyl	97	;	50-150				
2,4,5,6-Tetrachloro-m-Xylene	97	;	50-150				

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

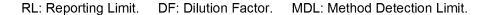
Page 3 of 4

Analytical Report

Weiss AssociatesDate Received:11/22/142200 Powell Street, Suite 925Work Order:14-11-1863Emeryville, CA 94608-1879Preparation:EPA 3510C

Method: EPA 8081A

Units: ng/L


Project: LRT 2014-2015 Annual Storm Water Sampling / 426-

2026.01 Task 1.1.3

2,4,5,6-Tetrachloro-m-Xylene

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SW-3-112014	14-11-1863-3-A	11/20/14 15:35	Aqueous	GC 44	11/25/14	11/29/14 14:47	141125L07
Comment(s): - Results were evaluated	d to the MDL (DL), cond	centrations >= t	o the MDL (DL	.) but < RL (LOC	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	MDL	<u>DF</u>	2	<u>Qualifiers</u>
Aldrin	ND		1.9	0.31	1.00		
4,4'-DDD	ND		1.9	0.53	1.00		
4,4'-DDE	ND		1.9	0.46	1.00		
4,4'-DDT	ND		1.9	0.53	1.00		
Alpha Chlordane	ND		1.9	0.47	1.00		
Dieldrin	ND		1.9	0.53	1.00		
Gamma Chlordane	ND		1.9	0.47	1.00		
Toxaphene	ND		24	7.9	1.00		
Endrin	ND		1.9	0.30	1.00		
Gamma-BHC	ND		1.9	0.44	1.00		
Heptachlor	1.6		1.9	0.35	1.00	J	
Heptachlor Epoxide	ND		1.9	0.33	1.00		
Surrogate	Rec.	(%)	Control Limits	Qualifiers			
Decachlorobiphenyl	91		50-150				

50-150

80

Analytical Report

Weiss Associates 2200 Powell Street, Suite 925 Emeryville, CA 94608-1879

Date Received: Work Order: Preparation: Method:

14-11-1863 **EPA 3510C EPA 8081A**

11/22/14

Units:

ng/L Page 4 of 4

Project: LRT 2014-2015 Annual Storm Water Sampling / 426-

2026.01 Task 1.1.3

Endrin

Gamma-BHC

Heptachlor Epoxide

Heptachlor

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-16-036-13	N/A	Aqueous	GC 44	11/25/14	11/29/14 11:14	141125L07
Comment(s): - Results were evaluated to	o the MDL (DL), conc	entrations >= to	the MDL (DL	.) but < RL (LOC	Q), if found, are o	qualified with a	"J" flag.
<u>Parameter</u>	<u>Resul</u>	<u>t</u> <u>R</u>	<u>:L</u>	MDL	<u>DF</u>	<u>C</u>	<u>(ualifiers</u>
Aldrin	ND	2	.0	0.33	1.00		
4,4'-DDD	0.80	2	.0	0.55	1.00	J	
4,4'-DDE	ND	2	.0	0.48	1.00		
4,4'-DDT	ND	2	.0	0.55	1.00		
Alpha Chlordane	ND	2	.0	0.49	1.00		
Dieldrin	ND	2	.0	0.55	1.00		
Gamma Chlordane	ND	2	.0	0.49	1.00		
Toxaphene	ND	2	5	8.2	1.00		

2.0

2.0

2.0

2.0

ND

0.60

ND

ND

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit. 1.00

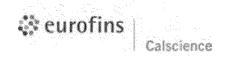
1.00

1.00

1.00

J

0.31


0.46

0.36

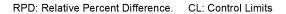
0.34

Qualifiers

Quality Control - LCS/LCSD

Weiss Associates 2200 Powell Street, Suite 925 Emeryville, CA 94608-1879 Date Received: Work Order: Preparation: Method: 11/22/14 14-11-1863 EPA 3510C

EPA 8081A


Page 1 of 2

Project: LRT 2014-2015 Annual Storm Water Sampling / 426-

2026.01 Task 1.1.3

Quality Control Sample ID	Туре		Matrix	Instr	ument	Date Prepare	ed Date A	nalyzed	LCS/LCSD Ba	tch Number
099-12-529-758	LCS		Aqueous	GC (51	11/24/14	11/25/	14 17:00	141124L03	
099-12-529-758	LCSD		Aqueous	GC !	51	11/24/14	11/25/	14 17:14	141124L03	
<u>Parameter</u>	<u>Spike</u> Added	LCS Conc.	LCS <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
Alpha-BHC	0.5000	0.4944	99	0.4956	99	50-135	36-149	0	0-25	
Gamma-BHC	0.5000	0.5003	100	0.5136	103	50-135	36-149	3	0-25	
Beta-BHC	0.5000	0.4108	82	0.4458	89	50-135	36-149	8	0-25	
Heptachlor	0.5000	0.5084	102	0.4579	92	50-135	36-149	10	0-25	
Delta-BHC	0.5000	0.5688	114	0.4934	99	50-135	36-149	14	0-25	
Aldrin	0.5000	0.4642	93	0.4186	84	50-135	36-149	10	0-25	
Heptachlor Epoxide	0.5000	0.4738	95	0.4706	94	50-135	36-149	1	0-25	
Endosulfan I	0.5000	0.4718	94	0.4752	95	50-135	36-149	1	0-25	
Dieldrin	0.5000	0.4955	99	0.4963	99	50-135	36-149	0	0-25	
4,4'-DDE	0.5000	0.4962	99	0.4905	98	50-135	36-149	1	0-25	
Endrin	0.5000	0.5254	105	0.5207	104	50-135	36-149	1	0-25	
Endrin Aldehyde	0.5000	0.6188	124	0.5010	100	50-135	36-149	21	0-25	
4,4'-DDD	0.5000	0.4929	99	0.4869	97	50-135	36-149	1	0-25	
Endosulfan II	0.5000	0.4834	97	0.4840	97	50-135	36-149	0	0-25	
4,4'-DDT	0.5000	0.5250	105	0.5012	100	50-135	36-149	5	0-25	
Endosulfan Sulfate	0.5000	0.4751	95	0.4776	96	50-135	36-149	1	0-25	
Methoxychlor	0.5000	0.4980	100	0.4936	99	50-135	36-149	1	0-25	

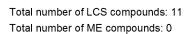
Total number of LCS compounds: 17
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Quality Control - LCS/LCSD

Weiss Associates 2200 Powell Street, Suite 925 Emeryville, CA 94608-1879

Date Received: Work Order: Preparation: Method:

11/22/14 14-11-1863 EPA 3510C


EPA 8081A

Page 2 of 2

Project: LRT 2014-2015 Annual Storm Water Sampling / 426-

2026.01 Task 1.1.3

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepare	ed Date A	nalyzed	LCS/LCSD Ba	tch Number
099-16-036-13	LCS		Aqueous	GC	44	11/25/14	11/29/	14 11:28	141125L07	
099-16-036-13	LCSD		Aqueous	GC	44	11/25/14	11/29/	14 11:43	141125L07	
<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
Aldrin	50.00	53.43	107	53.14	106	50-150	33-167	1	0-25	
4,4'-DDD	50.00	62.29	125	60.44	121	50-150	33-167	3	0-25	
4,4'-DDE	50.00	62.19	124	61.47	123	50-150	33-167	1	0-25	
4,4'-DDT	50.00	61.37	123	58.55	117	50-150	33-167	5	0-25	
Alpha Chlordane	50.00	55.26	111	57.19	114	50-150	33-167	3	0-25	
Dieldrin	50.00	61.47	123	59.54	119	50-150	33-167	3	0-25	
Gamma Chlordane	50.00	50.68	101	54.48	109	50-150	33-167	7	0-25	
Endrin	50.00	56.86	114	55.04	110	50-150	33-167	3	0-25	
Gamma-BHC	50.00	54.95	110	54.19	108	50-150	33-167	1	0-25	
Heptachlor	50.00	53.96	108	53.68	107	50-150	33-167	1	0-25	
Heptachlor Epoxide	50.00	56.24	112	55.87	112	50-150	33-167	1	0-25	

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Sample Analysis Summary Report

Work Order: 14-11-1863				Page 1 of 1
<u>Method</u>	<u>Extraction</u>	Chemist ID	<u>Instrument</u>	Analytical Location
EPA 8081A	EPA 3510C	669	GC 44	1
EPA 8081A	EPA 3510C	842	GC 51	1

Glossary of Terms and Qualifiers

Work Order: 14-11-1863 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
Ε	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike

- Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
- SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- Χ % Recovery and/or RPD out-of-range.
- Ζ Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

	П	1
	Г	7
I	`	
	C	כ
	C)
	C)
	C)
	4	١
	σ)
I		
	ス	J
	CCC)
	=	
	σ	•
	Ę)
ı	Ċ	•
I	2	•
ı		•
ı	CL COS	•
ı	CL 0000	•
ı	CL 00000	•
ı	CL 0000	•
1	CL 0000001	•
ı	CL 00000	•
1	CL 0000001	•
	CL 00000010-0-0	•
	CL 00000010-0	•
	CL 00000010-0	•
	CL 00000010-0	•

Chain of Custody Record

Client Contact

Job Name: LRT 2014-2015 Annual Storm Water Sampling Levin Richmond Terminal,

402 Wright Avenue, Richmond, CA 94804

Phone

FAX

Sample Identification

Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other_

CalSciene Environmental Lab

Concord, CA 94520

Weiss Associates

(510) 450-6000

(510) 547-5043

Address:

Lab ID

Emeryville, CA 94608

Phone: 925-689-9022

2200 Powell Street, Suite 925

5063 Commercial Circle, Suite H

.क				4			موسد
L Re	Relinquished by: Mary Cunningham	Company: Ueiss	Date/Time: 11/21/14 1040	Received by:	•	Company	I
Recollect	Religioushed by:	Company:	Date/Time:	Received by	0035047070000000000000000000000000000000	Company: EA	Ī
1	Relinquished by:	Company:	Date/Time:	Received by:	0	Company:	Ι
00330:	⊠ = Samples released to a secured, locke	d area.		● = Samples received	from a secured, locked area		
)313							
001							
15				material simulation in the contract of the con			

Please send analytic results, electronic deliverables and the

426-2026,01 Task 1.1.3

11/20/14

Analysis Turnaround Time:

Standard

Sample

Matrix # of Cont.

Field Filtered (X):

Special Instructions/OC Requirements & Comments: Level II Report. Report with reporting limit and method detection limit. Please use agreed upon analytical methods for lowest detection limits.

(Specify Days or Hours)

Sample

Time

original chain-of-custody form to:

Project Manager: Scott Bourne

labresults@weiss.com

mec@weiss.com

sab@weiss.com

Project ID:

Sampled by:

Sample date(s):

Sample Date

11/20/14

INSTRUCTIONS FOR LAB PERSONNEL: GeoTracker EDF required?

Yes

Equis 4-file EDWEDD required?

Yes
No

J:\Levin Richmond\03b_Sampling

Specify analytic/prep method and detection limit in report.

Notify us of any anomalous peaks in GC or other scans.

Call immediately with any questions or problems.

Protocol ID/path:

Pesticides (EPA 8081A)

14-11-1863

COC Number:

SDG number:

Sample Specific Notes:

<WebShip>>>>>

800-322-5555 WWW.g50.com

Ship From: ALAN KEMP CAL SCIENCE- CONCORD 5063 COMMERCIAL CIRCLE #H CONCORD, CA 94520 Ship To:

SAMPLE RECEIVING CEL 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00

Reference:

TERRA PACIFIC GROUP, WEISS, ARCADIS, PER,

Delivery Instructions:

Signature Type: SIGNATURE REQUIRED

526211907 Tracking #: SDS

D92845A

GARDEN GROVE

Print Date : 11/21/14 14:43 PM

Package 1 of 1

Send Label To Printer

Print All

Edit Shipment

Finish

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

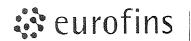
STEP 1 - Use the "Send Label to Printer" button on this page to print the shipping label on a laser or inkjet printer.

STEP 2 - Fold this page in half.

STEP 3 - Securely attach this label to your package, do not cover the barcode.

STEP 4 - Request an on-call pickup for your package, if you do not have scheduled daily pickup service or Drop-off your package at the nearest GSO drop box. Locate nearest GSO dropbox locations using this link.

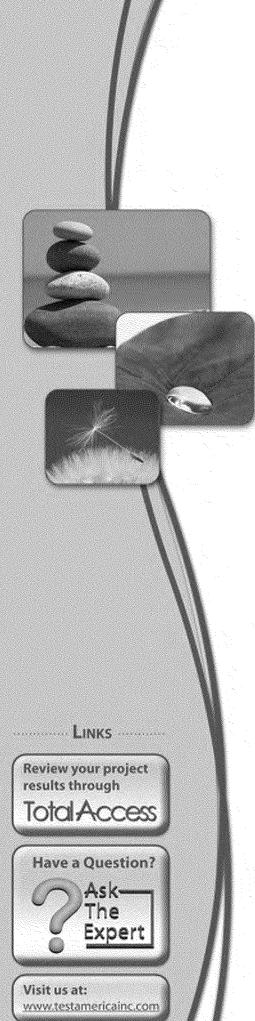
ADDITIONAL OPTIONS:


Send Label Via Email

Create Return Label

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all the service terms and conditions described in this section. Our liability for loss or damage to any package is limited to your actual damages or \$100 whichever is less, unless you pay for and declare a higher authorized value. If you declare a higher value and pay the additional charge, our liability will be the lesser of your declared value or the actual value of your loss or damage. In any event, we will not be liable for any damage, whether direct, incidental, special or consequential, in excess of the declared value of a shipment whether or not we had knowledge that such damage might be incurred including but not limited to loss of income or profit. We will not be liable for your acts or omissions, including but not limited to improper or insufficient packaging, securing, marking or addressing. Also, we will not be liable if you or the recipient violates any of the terms of our agreement. We will not be liable for loss, damage or delay caused by events we cannot control, including but not limited to acts of God, perils of the air, weather conditions, act of public enemies, war, strikes, or civil commotion. The highest declared value for our GSO Priority Letter or GSO Priority Package is \$500. For other shipments the highest declared value is \$10,000 unless your package contains items of "extraordinary value", in which case the highest declared value we allow is \$500. Items of "extraordinary value" include, but or not limited to, artwork, jewelry, furs, precious metals, tickets, negotiable instruments and other items with intrinsic value.


Calscience

WORK ORDER #: 14-11- [] [] []

SAMPLE RECEIPT FORM

Cooler _/ of _/

CLIENT: Wers	DATE: _	11/22/	14_
TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0 °C – 6.0 °C, not froze	en except se	diment/tissue)	
Temperature $3 \cdot / ^{\circ}C - 0.2 ^{\circ}C (CF) = 2 \cdot 9 ^{\circ}C$			
☐ Sample(s) outside temperature criteria (PM/APM contacted by:)			
☐ Sample(s) outside temperature criteria but received on ice/chilled on same of	day of sampl	ina.	
 □ Received at ambient temperature, placed on ice for transport by C Ambient Temperature: □ Air □ Filter 	ourier.	Checked by:	802
Ambient Temperature: Air Filter		00	
CUSTODY SEALS INTACT:			00
☐ Cooler ☐ ☐ No (Not Intact) ☐ Not Present	□ N/A	Checked by:	800
□ Sample □ □ No (Not Intact) ☑ Not Present		Checked by:	802
	×		
SAMPLE CONDITION:	Yes	No —	N/A
Chain-Of-Custody (COC) document(s) received with samples			
COC document(s) received complete			
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels	S.		
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.	7		
Sampler's name indicated on COC			
Sample container label(s) consistent with COC	2		
Sample container(s) intact and good condition	a		
Proper containers and sufficient volume for analyses requested	/		
Analyses received within holding time	. Ø		
Aqueous samples received within 15-minute holding time			
☐ pH ☐ Residual Chlorine ☐ Dissolved Sulfides ☐ Dissolved Oxygen	,		
Proper preservation noted on COC or sample container	5		
☐ Unpreserved vials received for Volatiles analysis			r f
Volatile analysis container(s) free of headspace		_	
Tedlar bag(s) free of condensation CONTAINER TYPE:			
Solid:	es [®] □Terra	ıCores [®] □	
Aqueous: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGB	p ZIAGB	□1AGBna₂ □	1AGBs
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGE	Bs □1PB	□1PBna □5	500PB
□250PB □250PBn □125PB □125PB znna □100PJ □100PJ na ₂ □_			
Air: Tedlar® Canister Other: Trip Blank Lot#: Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ u: Ultra-pure znna: ZnAc ₂ +l	Labeled	I/Checked by: Reviewed by:	129

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-61632-1

Client Project/Site: LRTC 2014-2015 Annual Stormwater

For:

Weiss Associates 2200 Powell Street Suite 925 Emeryville, California 94608

Attn: Mary Cunningham

Mind R 5 Som

Authorized for release by: 12/10/2014 6:00:52 PM

Micah Smith, Project Manager II (925)484-1919

micah.smith@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

ED_000946_Recollect_00330313-00118

2

3

4

5

-0

(e)

10

11

12

13

2

-

8

10

15

13

12

Ta	h		∽ f	0	nte	nte
ıa	DI	e	OT	LO	nte	nts

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
QC Sample Results	14
QC Association Summary	16
Lab Chronicle	18
Certification Summary	20
Method Summary	21
Sample Summary	22
Chain of Custody	23
Receipt Checklists	24

Definitions/Glossary

Client: Weiss Associates

Project/Site: LRTC 2014-2015 Annual Stormwater

TestAmerica Job ID: 720-61632-1

Qualifiers

Metals

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration

MDA Minimum detectable activity

EDL Estimated Detection Limit

MDC Minimum detectable concentration

MDL Method Detection Limit
ML Minimum Level (Dioxin)
NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: Weiss Associates

Project/Site: LRTC 2014-2015 Annual Stormwater

TestAmerica Job ID: 720-61632-1

Job ID: 720-61632-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-61632-1

Comments

No additional comments.

Receipt

The samples were received on 12/3/2014 5:43 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.1° C.

Except:

We received only one 1 liter poly for SHEET-2-120214 (720-61632-6). All analyses were marked for that sample, however because we only received a single 1 Liter bottle the sample was only logged in for TSS.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method(s) 1664A: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with batch 222932.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Weiss Associates

Project/Site: LRTC 2014-2015 Annual Stormwater

Lab Sample ID: 720-61632-1

TestAmerica Job ID: 720-61632-1

Client Sample ID: SW-11-1	20214				La	o Sample I	D: 720-61632
Analyte	Result Qu	alifier RI	. MDL	Unit	Dil Fac	D Method	Prep Type
Aluminum	0.13	0.10	0.034	mg/L	1	200.8	Total/NA
Copper	0.0022	0.001	0.00011	mg/L	1	200.8	Total/NA
Iron	0.25	0.04	0.0058	mg/L	1	200.8	Total/NA
Nickel	0.0022 J	0.003	0.00040	mg/L	1	200.8	Total/NA
Lead	0.0012	0.0004	0.000034	mg/L	1	200.8	Total/NA
Zinc	0.027	0.004	0.0019	mg/L	1	200.8	Total/NA
Total Suspended Solids	17	2.0	1.0	mg/L	1	SM 2540D	Total/NA
Analyte	Result Qu	ıalifier Ri	. RL	Unit	Dil Fac	D Method	Prep Type
Specific Conductance	2400	1.0	1.0	umhos/cm		SM 2510B	Total/NA

Client Sample ID: SW-12-120214

Lab Sample ID: 720-61632-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	0.58		0.10	0.034	mg/L	1	_	200.8	Total/NA
Copper	0.0091		0.0010	0.00011	mg/L	1		200.8	Total/NA
Iron	1.3		0.040	0.0058	mg/L	1		200.8	Total/NA
Nickel	0.0066		0.0030	0.00040	mg/L	1		200.8	Total/NA
Lead	0.0066		0.00040	0.000034	mg/L	1		200.8	Total/NA
Zinc	0.075		0.0040	0.0019	mg/L	1		200.8	Total/NA
Total Suspended Solids	23		1.7	0.83	mg/L	1		SM 2540D	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Specific Conductance	76		1.0	1.0	umhos/cm	1	_	SM 2510B	Total/NA

Client Sample ID: SW-3-120214

Lab Sample ID: 720-61632-3

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	0.95		0.10	0.034	mg/L	1	_	200.8	Total/NA
Copper	0.0076		0.0010	0.00011	mg/L	1		200.8	Total/NA
Iron	2.1		0.040	0.0058	mg/L	1		200.8	Total/NA
Nickel	0.0033		0.0030	0.00040	mg/L	1		200.8	Total/NA
Lead	0.0077		0.00040	0.000034	mg/L	1		200.8	Total/NA
Zinc	0.10		0.0040	0.0019	mg/L	1		200.8	Total/NA
Total Suspended Solids	120		6.7	3.3	mg/L	1		SM 2540D	Total/NA
Analyte	Result (Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Specific Conductance	890		1.0	1.0	umhos/cm	1	_	SM 2510B	Total/NA

Client Sample ID: SW-3-120214-DUP

Lab Sample ID: 720-61632-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	1.0		0.10	0.034	mg/L	1	_	200.8	Total/NA
Copper	0.0074		0.0010	0.00011	mg/L	1		200.8	Total/NA
Iron	2.1		0.040	0.0058	mg/L	1		200.8	Total/NA
Nickel	0.0032		0.0030	0.00040	mg/L	1		200.8	Total/NA
Lead	0.0076		0.00040	0.000034	mg/L	1		200.8	Total/NA
Zinc	0.10		0.0040	0.0019	mg/L	1		200.8	Total/NA
Total Suspended Solids	120		10	5.0	mg/L	1		SM 2540D	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Specific Conductance	900		1.0	1.0	umhos/cm	1	_	SM 2510B	Total/NA

This Detection Summary does not include radiochemical test results.

Detection Summary

Client: Weiss Associates

Project/Site: LRTC 2014-2015 Annual Stormwater

TestAmerica Job ID: 720-61632-1

Lab	Sample	ID:	720-61632-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	0.83		0.10	0.034	mg/L	1	_	200.8	Total/NA
Copper	0.0089		0.0010	0.00011	mg/L	1		200.8	Total/NA
Iron	1.3		0.040	0.0058	mg/L	1		200.8	Total/NA
Nickel	0.0029	J	0.0030	0.00040	mg/L	1		200.8	Total/NA
Lead	0.0075		0.00040	0.000034	mg/L	1		200.8	Total/NA
Zinc	0.096		0.0040	0.0019	mg/L	1		200.8	Total/NA
Total Suspended Solids	79		5.9	2.9	mg/L	1		SM 2540D	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Specific Conductance	220		1.0	1.0	umhos/cm	1	_	SM 2510B	Total/NA

Client Sample ID: SHEET-2-120214

Lab Sample ID: 720-61632-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Met	thod	Prep Type
Total Suspended Solids	2.1		1.1	0.53	mg/L	1		2540D	Total/NA

Client Sample ID: TS1-E-120214

Lab Sample ID: 720-61632-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	0.14		0.10	0.034	mg/L	1	_	200.8	Total/NA
Copper	0.00089	J	0.0010	0.00011	mg/L	1		200.8	Total/NA
Iron	0.17		0.040	0.0058	mg/L	1		200.8	Total/NA
Nickel	0.00050	J	0.0030	0.00040	mg/L	1		200.8	Total/NA
Lead	0.00073		0.00040	0.000034	mg/L	1		200.8	Total/NA
Zinc	0.023		0.0040	0.0019	mg/L	1		200.8	Total/NA
Total Suspended Solids	14		2.0	1.0	mg/L	1		SM 2540D	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Specific Conductance	200		1.0	1.0	umhos/cm	1	_	SM 2510B	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Weiss Associates

Project/Site: LRTC 2014-2015 Annual Stormwater

Client Sample ID: SW-11-120214 Lab Sample ID: 720-61632-1

Date Collected: 12/02/14 10:55 Matrix: Water

Date Received: 12/03/14 17:43

Method: 200.8 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.13		0.10	0.034	mg/L		12/08/14 12:18	12/09/14 10:09	1
Copper	0.0022		0.0010	0.00011	mg/L		12/08/14 12:18	12/09/14 10:09	1
Iron	0.25		0.040	0.0058	mg/L		12/08/14 12:18	12/09/14 10:09	1
Nickel	0.0022	J	0.0030	0.00040	mg/L		12/08/14 12:18	12/09/14 10:09	1
Lead	0.0012		0.00040	0.000034	mg/L		12/08/14 12:18	12/09/14 10:09	1
Zinc	0.027		0.0040	0.0019	mg/L		12/08/14 12:18	12/09/14 10:09	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
SGT-HEM	ND		5.4	1.5	mg/L		12/06/14 12:09	12/06/14 14:46	1
Total Suspended Solids	17		2.0	1.0	mg/L			12/05/14 17:05	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Specific Conductance	2400		1.0	1.0	umhos/cm			12/06/14 12:00	1

TestAmerica Pleasanton

Client: Weiss Associates

Project/Site: LRTC 2014-2015 Annual Stormwater

Client Sample ID: SW-12-120214 Lab Sample ID: 720-61632-2

Date Collected: 12/02/14 13:00 Matrix: Water

Date Received: 12/03/14 17:43

Method: 200.8 - Metals (ICP/MS) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.58		0.10	0.034	mg/L		12/08/14 12:18	12/09/14 10:13	1
Copper	0.0091		0.0010	0.00011	mg/L		12/08/14 12:18	12/09/14 10:13	1
Iron	1.3		0.040	0.0058	mg/L		12/08/14 12:18	12/09/14 10:13	1
Nickel	0.0066		0.0030	0.00040	mg/L		12/08/14 12:18	12/09/14 10:13	1
Lead	0.0066		0.00040	0.000034	mg/L		12/08/14 12:18	12/09/14 10:13	1
Zinc	0.075		0.0040	0.0019	mg/L		12/08/14 12:18	12/09/14 10:13	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
SGT-HEM	ND		5.1	1.4	mg/L		12/06/14 12:09	12/06/14 14:46	1
Total Suspended Solids	23		1.7	0.83	mg/L			12/05/14 17:05	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Specific Conductance	76		1.0	1.0	umhos/cm			12/06/14 12:00	1

TestAmerica Pleasanton

Client: Weiss Associates

Project/Site: LRTC 2014-2015 Annual Stormwater

Client Sample ID: SW-3-120214 Lab Sample ID: 720-61632-3

Date Collected: 12/02/14 11:45 Matrix: Water

Date Received: 12/03/14 17:43

Method: 200.8 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.95		0.10	0.034	mg/L		12/08/14 12:18	12/09/14 10:16	1
Copper	0.0076		0.0010	0.00011	mg/L		12/08/14 12:18	12/09/14 10:16	1
Iron	2.1		0.040	0.0058	mg/L		12/08/14 12:18	12/09/14 10:16	1
Nickel	0.0033		0.0030	0.00040	mg/L		12/08/14 12:18	12/09/14 10:16	1
Lead	0.0077		0.00040	0.000034	mg/L		12/08/14 12:18	12/09/14 10:16	1
Zinc	0.10		0.0040	0.0019	mg/L		12/08/14 12:18	12/09/14 10:16	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
SGT-HEM	ND		6.6	1.9	mg/L		12/06/14 12:09	12/06/14 14:46	1
Total Suspended Solids	120		6.7	3.3	mg/L			12/05/14 17:05	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Specific Conductance	890		1.0	1.0	umhos/cm			12/06/14 12:00	1

TestAmerica Pleasanton

Client: Weiss Associates

Project/Site: LRTC 2014-2015 Annual Stormwater

Client Sample ID: SW-3-120214-DUP

Lab Sample ID: 720-61632-4

Date Collected: 12/02/14 11:40 Matrix: Water

Date Received: 12/03/14 17:43

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1.0		0.10	0.034	mg/L		12/08/14 12:18	12/09/14 10:20	1
Copper	0.0074		0.0010	0.00011	mg/L		12/08/14 12:18	12/09/14 10:20	1
Iron	2.1		0.040	0.0058	mg/L		12/08/14 12:18	12/09/14 10:20	1
Nickel	0.0032		0.0030	0.00040	mg/L		12/08/14 12:18	12/09/14 10:20	1
Lead	0.0076		0.00040	0.000034	mg/L		12/08/14 12:18	12/09/14 10:20	1
Zinc	0.10		0.0040	0.0019	mg/L		12/08/14 12:18	12/09/14 10:20	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
SGT-HEM	ND		5.2	1.5	mg/L		12/06/14 12:09	12/06/14 14:46	1
Total Suspended Solids	120		10	5.0	mg/L			12/05/14 17:05	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Specific Conductance	900		1.0	1.0	umhos/cm			12/06/14 12:00	1

TestAmerica Pleasanton

Client: Weiss Associates

Project/Site: LRTC 2014-2015 Annual Stormwater

Client Sample ID: SW-4/5/6/7-120214 Lab Sample ID: 720-61632-5

Date Collected: 12/02/14 11:30 Matrix: Water

Date Received: 12/03/14 17:43

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.83		0.10	0.034	mg/L		12/08/14 12:18	12/09/14 10:24	1
Copper	0.0089		0.0010	0.00011	mg/L		12/08/14 12:18	12/09/14 10:24	1
Iron	1.3		0.040	0.0058	mg/L		12/08/14 12:18	12/09/14 10:24	1
Nickel	0.0029	J	0.0030	0.00040	mg/L		12/08/14 12:18	12/09/14 10:24	1
Lead	0.0075		0.00040	0.000034	mg/L		12/08/14 12:18	12/09/14 10:24	1
Zinc	0.096		0.0040	0.0019	mg/L		12/08/14 12:18	12/09/14 10:24	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
SGT-HEM	ND		5.2	1.5	mg/L		12/06/14 12:09	12/06/14 14:46	1
Total Suspended Solids	79		5.9	2.9	mg/L			12/05/14 17:05	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Specific Conductance	220		1.0	1.0	umhos/cm			12/06/14 12:00	1

TestAmerica Pleasanton

Client: Weiss Associates TestAmerica Job ID: 720-61632-1

Project/Site: LRTC 2014-2015 Annual Stormwater

Client Sample ID: SHEET-2-120214 Lab Sample ID: 720-61632-6

Date Collected: 12/02/14 11:10 Matrix: Water

Date Received: 12/03/14 17:43

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	2.1		1.1	0.53	mg/L			12/05/14 17:05	1

Client: Weiss Associates

Project/Site: LRTC 2014-2015 Annual Stormwater

Client Sample ID: TS1-E-120214 Lab Sample ID: 720-61632-7

Date Collected: 12/02/14 12:10 Matrix: Water

Date Received: 12/03/14 17:43

Method: 200.8 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.14		0.10	0.034	mg/L		12/08/14 12:18	12/09/14 10:28	1
Copper	0.00089	J	0.0010	0.00011	mg/L		12/08/14 12:18	12/09/14 10:28	1
Iron	0.17		0.040	0.0058	mg/L		12/08/14 12:18	12/09/14 10:28	1
Nickel	0.00050	J	0.0030	0.00040	mg/L		12/08/14 12:18	12/09/14 10:28	1
Lead	0.00073		0.00040	0.000034	mg/L		12/08/14 12:18	12/09/14 10:28	1
Zinc	0.023		0.0040	0.0019	mg/L		12/08/14 12:18	12/09/14 10:28	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
SGT-HEM	ND		5.5	1.5	mg/L		12/06/14 12:09	12/06/14 14:46	1
Total Suspended Solids	14		2.0	1.0	mg/L			12/05/14 17:05	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Specific Conductance	200		1.0	1.0	umhos/cm			12/06/14 12:00	1

TestAmerica Pleasanton

QC Sample Results

Client: Weiss Associates

Project/Site: LRTC 2014-2015 Annual Stormwater

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 580-177612/20-A

Matrix: Water

Analysis Batch: 177734

Client Sample ID: Method Blank

TestAmerica Job ID: 720-61632-1

Prep Type: Total/NA

Prep Batch: 177612

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.10	0.034	mg/L		12/08/14 12:18	12/09/14 09:28	1
Copper	ND		0.0010	0.00011	mg/L		12/08/14 12:18	12/09/14 09:28	1
Iron	ND		0.040	0.0058	mg/L		12/08/14 12:18	12/09/14 09:28	1
Nickel	ND		0.0030	0.00040	mg/L		12/08/14 12:18	12/09/14 09:28	1
Lead	ND		0.00040	0.000034	mg/L		12/08/14 12:18	12/09/14 09:28	1
Zinc	ND		0.0040	0.0019	mg/L		12/08/14 12:18	12/09/14 09:28	1

Lab Sample ID: LCS 580-177612/21-A

Matrix: Water

Analysis Batch: 177734

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 177612

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	1.00	1.07		mg/L		107	85 - 115	
Copper	0.100	0.101		mg/L		101	85 - 115	
Iron	10.0	10.3		mg/L		103	85 - 115	
Nickel	0.100	0.0992		mg/L		99	85 - 115	
Lead	0.100	0.104		mg/L		104	85 - 115	
Zinc	0.100	0.0998		mg/L		100	85 - 115	

Lab Sample ID: LCSD 580-177612/22-A

Matrix: Water

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 177612

Analysis Batch: 177734 LCSD LCSD Spike %Rec. RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit 1.00 1.07 Aluminum mg/L 107 85 - 115 0 20 0.100 0.0988 85 _ 115 Copper 99 20 mg/L 2 Iron 10.0 10.3 103 85 - 115 20 mg/L Nickel 0.100 0.0982 98 85_115 20 mg/L Lead 0.100 0.103 mg/L 103 85 _ 115 20 Zinc 0.100 0.0993 mg/L 85 _ 115 20

Method: 1664A - HEM and SGT-HEM

Lab Sample ID: MB 440-222932/1-A

Matrix: Water

Analysis Batch: 223027

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 222932

мв мв

Result Qualifier RL MDL Unit Prepared Dil Fac Analyte Analyzed 5.0 12/06/14 12:09 SGT-HEM ND 1.4 mg/L 12/06/14 14:46

Lab Sample ID: LCS 440-222932/2-A

Matrix: Water

Analysis Batch: 223027

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 222932

%Rec.

Spike LCS LCS Added Result Qualifier Analyte Unit %Rec Limits SGT-HEM 10.0 8.20 mg/L 82 70 - 110

QC Sample Results

Client: Weiss Associates

Project/Site: LRTC 2014-2015 Annual Stormwater

TestAmerica Job ID: 720-61632-1

Method:	1664A -	HEM	and	SGT-HE	M (Cc	ontinued)
---------	---------	-----	-----	--------	-------	-----------

Lab Sample ID: LCSD 440-222932/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 223027

Prep Type: Total/NA Prep Batch: 222932

Prep Type: Total/NA

RPD

%Rec. Analyte Added Result Qualifier Unit Limit D %Rec Limits RPD SGT-HEM 10.0 8.90 mg/L 89 70 - 110 8 15

Spike

LCSD LCSD

Method: SM 2510B - Conductivity, Specific Conductance

Lab Sample ID: MB 440-223029/3 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 223029

MB MB

RL **RL** Unit Dil Fac Analyte Result Qualifier D Prepared Analyzed 1.0 Specific Conductance 1.0 umhos/cm 12/06/14 12:00 ND

Lab Sample ID: LCS 440-223029/4 Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 223029

LCS LCS Spike %Rec. Added Result Qualifie Unit %Rec Limits Specific Conductance 765 768 umhos/cm 100 90 - 110

Lab Sample ID: 720-61632-5 DU Client Sample ID: SW-4/5/6/7-120214

Matrix: Water

Analysis Batch: 223029

DU DU RPD Sample Sample Analyte Result Qualifier Result Qualifier Unit RPD Limit Specific Conductance 220 221 5 umhos/cm

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 440-222913/2 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 222913

мв мв

Result Qualifier RL MDL Unit Dil Fac Analyte D Prepared Analyzed Total Suspended Solids ND 1 0 0.50 mg/L 12/05/14 17:05

Lab Sample ID: LCS 440-222913/1 Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 222913

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Total Suspended Solids 1000 990 ma/L 99 85 _ 115

Lab Sample ID: 720-61632-3 DU Client Sample ID: SW-3-120214

Matrix: Water

Analysis Batch: 222913

DU DU RPD Sample Sample Analyte Result Qualifier Result Qualifier Unit RPD Limit Total Suspended Solids 120 121 mg/L

QC Association Summary

Client: Weiss Associates

Project/Site: LRTC 2014-2015 Annual Stormwater

TestAmerica Job ID: 720-61632-1

Prep	Batch	۱: ˈ	17	7	6	12	
------	-------	------	----	---	---	----	--

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-61632-1	SW-11-120214	Total/NA	Water	200.8	
720-61632-2	SW-12-120214	Total/NA	Water	200.8	
720-61632-3	SW-3-120214	Total/NA	Water	200.8	
720-61632-4	SW-3-120214-DUP	Total/NA	Water	200.8	
720-61632-5	SW-4/5/6/7-120214	Total/NA	Water	200.8	
720-61632-7	TS1-E-120214	Total/NA	Water	200.8	
LCS 580-177612/21-A	Lab Control Sample	Total/NA	Water	200.8	
LCSD 580-177612/22-A	Lab Control Sample Dup	Total/NA	Water	200.8	
MB 580-177612/20-A	Method Blank	Total/NA	Water	200.8	

Analysis Batch: 177734

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-61632-1	SW-11-120214	Total/NA	Water	200.8	177612
720-61632-2	SW-12-120214	Total/NA	Water	200.8	177612
720-61632-3	SW-3-120214	Total/NA	Water	200.8	177612
720-61632-4	SW-3-120214-DUP	Total/NA	Water	200.8	177612
720-61632-5	SW-4/5/6/7-120214	Total/NA	Water	200.8	177612
720-61632-7	TS1-E-120214	Total/NA	Water	200.8	177612
LCS 580-177612/21-A	Lab Control Sample	Total/NA	Water	200.8	177612
LCSD 580-177612/22-A	Lab Control Sample Dup	Total/NA	Water	200.8	177612
MB 580-177612/20-A	Method Blank	Total/NA	Water	200.8	177612

General Chemistry

Analysis Batch: 222913

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-61632-1	SW-11-120214	Total/NA	Water	SM 2540D	
720-61632-2	SW-12-120214	Total/NA	Water	SM 2540D	
720-61632-3	SW-3-120214	Total/NA	Water	SM 2540D	
720-61632-3 DU	SW-3-120214	Total/NA	Water	SM 2540D	
720-61632-4	SW-3-120214-DUP	Total/NA	Water	SM 2540D	
720-61632-5	SW-4/5/6/7-120214	Total/NA	Water	SM 2540D	
720-61632-6	SHEET-2-120214	Total/NA	Water	SM 2540D	
720-61632-7	TS1-E-120214	Total/NA	Water	SM 2540D	
LCS 440-222913/1	Lab Control Sample	Total/NA	Water	SM 2540D	
MB 440-222913/2	Method Blank	Total/NA	Water	SM 2540D	

Prep Batch: 222932

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
720-61632-1	SW-11-120214	Total/NA	Water	1664A	_
720-61632-2	SW-12-120214	Total/NA	Water	1664A	
720-61632-3	SW-3-120214	Total/NA	Water	1664A	
720-61632-4	SW-3-120214-DUP	Total/NA	Water	1664A	
720-61632-5	SW-4/5/6/7-120214	Total/NA	Water	1664A	
720-61632-7	TS1-E-120214	Total/NA	Water	1664A	
LCS 440-222932/2-A	Lab Control Sample	Total/NA	Water	1664A	
LCSD 440-222932/3-A	Lab Control Sample Dup	Total/NA	Water	1664A	
MB 440-222932/1-A	Method Blank	Total/NA	Water	1664A	

QC Association Summary

Client: Weiss Associates

Project/Site: LRTC 2014-2015 Annual Stormwater

TestAmerica Job ID: 720-61632-1

General Chemistry (Continued)

Analysis Batch: 223027

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-61632-1	SW-11-120214	Total/NA	Water	1664A	222932
720-61632-2	SW-12-120214	Total/NA	Water	1664A	222932
720-61632-3	SW-3-120214	Total/NA	Water	1664A	222932
720-61632-4	SW-3-120214-DUP	Total/NA	Water	1664A	222932
720-61632-5	SW-4/5/6/7-120214	Total/NA	Water	1664A	222932
720-61632-7	TS1-E-120214	Total/NA	Water	1664A	222932
LCS 440-222932/2-A	Lab Control Sample	Total/NA	Water	1664A	222932
LCSD 440-222932/3-A	Lab Control Sample Dup	Total/NA	Water	1664A	222932
MB 440-222932/1-A	Method Blank	Total/NA	Water	1664A	222932

Analysis Batch: 223029

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-61632-1	SW-11-120214	Total/NA	Water	SM 2510B	
720-61632-2	SW-12-120214	Total/NA	Water	SM 2510B	
720-61632-3	SW-3-120214	Total/NA	Water	SM 2510B	
720-61632-4	SW-3-120214-DUP	Total/NA	Water	SM 2510B	
720-61632-5	SW-4/5/6/7-120214	Total/NA	Water	SM 2510B	
720-61632-5 DU	SW-4/5/6/7-120214	Total/NA	Water	SM 2510B	
720-61632-7	TS1-E-120214	Total/NA	Water	SM 2510B	
LCS 440-223029/4	Lab Control Sample	Total/NA	Water	SM 2510B	
MB 440-223029/3	Method Blank	Total/NA	Water	SM 2510B	

Lab Chronicle

Client: Weiss Associates

Project/Site: LRTC 2014-2015 Annual Stormwater

Lab Sample ID: 720-61632-1

TestAmerica Job ID: 720-61632-1

Matrix: Water

Client Sample ID: SW-11-120214

Date Collected: 12/02/14 10:55 Date Received: 12/03/14 17:43

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	200.8			177612	12/08/14 12:18	PAB	TAL SEA
Total/NA	Analysis	200.8		1	177734	12/09/14 10:09	FCW	TAL SEA
Total/NA	Prep	1664A			222932	12/06/14 12:09	AMR	TAL IRV
Total/NA	Analysis	1664A		1	223027	12/06/14 14:46	AMR	TAL IRV
Total/NA	Analysis	SM 2510B		1	223029	12/06/14 12:00	XL	TAL IRV
Total/NA	Analysis	SM 2540D		1	222913	12/05/14 17:05	NTN	TAL IRV

Client Sample ID: SW-12-120214

Date Collected: 12/02/14 13:00

Date Received: 12/03/14 17:43

Lab Sample ID: 720-61632-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	200.8			177612	12/08/14 12:18	PAB	TAL SEA
Total/NA	Analysis	200.8		1	177734	12/09/14 10:13	FCW	TAL SEA
Total/NA	Prep	1664A			222932	12/06/14 12:09	AMR	TAL IRV
Total/NA	Analysis	1664A		1	223027	12/06/14 14:46	AMR	TAL IRV
Total/NA	Analysis	SM 2510B		1	223029	12/06/14 12:00	XL	TAL IRV
Total/NA	Analysis	SM 2540D		1	222913	12/05/14 17:05	NTN	TAL IRV

Client Sample ID: SW-3-120214

Date Collected: 12/02/14 11:45 Date Received: 12/03/14 17:43

Lab Sample ID: 720-61632-3

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	200.8			177612	12/08/14 12:18	PAB	TAL SEA
Total/NA	Analysis	200.8		1	177734	12/09/14 10:16	FCW	TAL SEA
Total/NA	Prep	1664A			222932	12/06/14 12:09	AMR	TAL IRV
Total/NA	Analysis	1664A		1	223027	12/06/14 14:46	AMR	TAL IRV
Total/NA	Analysis	SM 2510B		1	223029	12/06/14 12:00	XL	TAL IRV
Total/NA	Analysis	SM 2540D		1	222913	12/05/14 17:05	NTN	TAL IRV

Client Sample ID: SW-3-120214-DUP

Date Collected: 12/02/14 11:40

Date Received: 12/03/14 17:43

Lab Sample ID: 720-61632-4

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	200.8			177612	12/08/14 12:18	PAB	TAL SEA
Total/NA	Analysis	200.8		1	177734	12/09/14 10:20	FCW	TAL SEA
Total/NA	Prep	1664A			222932	12/06/14 12:09	AMR	TAL IRV
Total/NA	Analysis	1664A		1	223027	12/06/14 14:46	AMR	TAL IRV
Total/NA	Analysis	SM 2510B		1	223029	12/06/14 12:00	XL	TAL IRV
Total/NA	Analysis	SM 2540D		1	222913	12/05/14 17:05	NTN	TAL IRV

Lab Chronicle

Client: Weiss Associates

Project/Site: LRTC 2014-2015 Annual Stormwater

TestAmerica Job ID: 720-61632-1

Client Sample ID: SW-4/5/6/7-120214 Lab Sample ID: 720-61632-5

Date Collected: 12/02/14 11:30 Matrix: Water

Date Received: 12/03/14 17:43

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	200.8			177612	12/08/14 12:18	PAB	TAL SEA
Total/NA	Analysis	200.8		1	177734	12/09/14 10:24	FCW	TAL SEA
Total/NA	Prep	1664A			222932	12/06/14 12:09	AMR	TAL IRV
Total/NA	Analysis	1664A		1	223027	12/06/14 14:46	AMR	TAL IRV
Total/NA	Analysis	SM 2510B		1	223029	12/06/14 12:00	XL	TAL IRV
Total/NA	Analysis	SM 2540D		1	222913	12/05/14 17:05	NTN	TAL IRV

Client Sample ID: SHEET-2-120214 Lab Sample ID: 720-61632-6

Date Collected: 12/02/14 11:10 Matrix: Water

Date Received: 12/03/14 17:43

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540D			222913	12/05/14 17:05	NTN	TAL IRV

Client Sample ID: TS1-E-120214 Lab Sample ID: 720-61632-7

Date Collected: 12/02/14 12:10 Matrix: Water

Date Received: 12/03/14 17:43

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	200.8			177612	12/08/14 12:18	PAB	TAL SEA
Total/NA	Analysis	200.8		1	177734	12/09/14 10:28	FCW	TAL SEA
Total/NA	Prep	1664A			222932	12/06/14 12:09	AMR	TAL IRV
Total/NA	Analysis	1664A		1	223027	12/06/14 14:46	AMR	TAL IRV
Total/NA	Analysis	SM 2510B		1	223029	12/06/14 12:00	XL	TAL IRV
Total/NA	Analysis	SM 2540D		1	222913	12/05/14 17:05	NTN	TAL IRV

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Certification Summary

Client: Weiss Associates

Project/Site: LRTC 2014-2015 Annual Stormwater

TestAmerica Job ID: 720-61632-1

Laboratory: TestAmerica Pleasanton

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	State Program	9	2496	01-31-16

Laboratory: TestAmerica Irvine

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
California	State Prog	ram	9	2706	06-30-16
The following analytes	are included in this report, but	certification is not offe	ered by the governing a	authority:	
The following analytes Analysis Method	are included in this report, but	certification is not offe Matrix	ered by the governing a	•	

Laboratory: TestAmerica Seattle

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date		
Alaska (UST)	State Program	10	UST-022	03-04-15		
California	State Program	9	2901	01-31-15		
L-A-B	DoD ELAP		L2236	01-19-16		
L-A-B	ISO/IEC 17025		L2236	01-19-16		
Montana (UST)	State Program	8	N/A	04-30-20		
Oregon	NELAP	10	WA100007	11-06-15		
USDA	Federal		P330-11-00222	04-08-17		
Washington	State Program	10	C553	02-17-15		

Method Summary

Client: Weiss Associates

Project/Site: LRTC 2014-2015 Annual Stormwater

Method	Method Description	Protocol	Laboratory
200.8	Metals (ICP/MS)	EPA	TAL SEA
1664A	HEM and SGT-HEM	1664A	TAL IRV
SM 2510B	Conductivity, Specific Conductance	SM	TAL IRV
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL IRV

Protocol References:

1664A = EPA-821-98-002

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater",

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022 TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

TestAmerica Pleasanton

Sample Summary

Client: Weiss Associates

Project/Site: LRTC 2014-2015 Annual Stormwater

TestAmerica Job ID: 720-61632-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-61632-1	SW-11-120214	Water	12/02/14 10:55	12/03/14 17:43
720-61632-2	SW-12-120214	Water	12/02/14 13:00	12/03/14 17:43
720-61632-3	SW-3-120214	Water	12/02/14 11:45	12/03/14 17:43
720-61632-4	SW-3-120214-DUP	Water	12/02/14 11:40	12/03/14 17:43
720-61632-5	SW-4/5/6/7-120214	Water	12/02/14 11:30	12/03/14 17:43
720-61632-6	SHEET-2-120214	Water	12/02/14 11:10	12/03/14 17:43
720-61632-7	TS1-E-120214	Water	12/02/14 12:10	12/03/14 17:43

ED_000946_Recollect_00330313-00140

720-61632

Chain of Custody Record

TestAmerica 1220 Quarry Lane Pleasanton, CA 94566

Please send analytic results, electronic deliverables and the original chain-of-custody form to labresults@weiss.com

mec@weiss.com

INSTRUCTIONS FOR LAB PERSONNEL:

GeoTracker EDF required?

U Yes Equis 4-file EDWEDD required? Yes D No Specify analytic/prep method and detection limit in report Notify us of any anomalous peaks in GC or other scans

	5-484-1919 ext.137	sab@wei:	iss.com				C	all um	mediai	tely wi	th any	question	s or pro	blems										00//	
	Client Contact	Project N	Manager:	Scott Bourne	3		Protoc	ol ID/	path:	,	J/Lev	n Richm	ond\03b_	Samplin	ğ					,	,	,		COC Nuu	ber:
eiss Associate	s	Project I	D:	426-2026.01	Task 1.1.3					<u>چ</u>	(N)									ĺ					
00 Powell Stre	eet, Suite 925	Sampled	by: \bigvee	(Cunnic	<u> 19han</u>	-			2510B)	Suspended Solids (SM 2540D)	SGT-HEM)	- Al,Cu, Fe, Ni, Pb, Zn ICP-MS)		1								İ		1	1
meryville, CA	94608	Sample d		12/2/					£251	3M 2	A SG	, P												Page	r
10) 450-6000	Phone	4	Analys	is Turnaro	und Tim	e:			e (SM	sp(1664A	Fe, 1													
10) 547-5043	FAX	4					(Method ID)		tenc	Sol	(EPA 1	LO,										l		SDG nan	ber:
	2014-2015 Annual Storm Water Sampling	4	***************************************	Standard	<u> </u>		8	040B)	nduc	andec	E (E	P V													
	n Richmond Terminal Wright Avenue, Richmond, CA 94804		(S	pecify Days or I	Hours)		ly te	K	ic Co	odsn	Grease	Metals- 200 8 J													
Lab ID	Sample Identification	Samı	ple Date	Sample Time	Sample Matrix	# of Cont.			Specif	Total S	Oil &	Total 1				46.00			· · · · · · · · · · · · · · · · · · ·					Sample Speci	fic Notes:
/ [SW-11-120214	12/0	12/4	1022	W	5	N v	V	✓	\checkmark	√	V													
	SW-12-120214	,	[1300)	5			1	1	-	1													
3	SW-3-120214			1145		5		1		1															
4	SW-2-120214-dup			1140		5									444										
5	SW-3-120214-dup SW-4/7/6/7-120214 SHEET-2-120214			1130		5				П					and the second second										***
6 5	HFET-2-120214			1(10		(T	П	П	П													
7	TS1-E-120214	1		1210		5			Y	V	4	V													
7																									
		†	1			†					T	1					İ				 		1	<u> </u>	
]		1						+-	╁──					-			 	-	-	-		····
					٧,	d Filtered (~~~				 	 	İ								ļ	-	+		
			. ,, , ,		. FACS	o vritérea l	AF			-	┼	-				·····	<u> </u>		ļ	ऻ—		-	+-	-	
Prese	ervation Used: 1= Ice, 2= HCl; 3= H ₂ SO ₄ ; 4=HI ctions/QC Requirements & Comments:							1	1	1		1,4		1	1	1	1	1	1	1	1	1	1		

☑ = Samples released to a secured, locked area.

Samples received from a secured, locked area

0

Login Sample Receipt Checklist

Client: Weiss Associates Job Number: 720-61632-1

Login Number: 61632 List Source: TestAmerica Pleasanton

List Number: 1

Creator: Bullock, Tracy

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	False	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Login Sample Receipt Checklist

Client: Weiss Associates Job Number: 720-61632-1

List Source: TestAmerica Irvine
List Number: 3
List Creation: 12/05/14 01:51 PM

Creator: Ornelas, Olga

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	


Login Sample Receipt Checklist

Client: Weiss Associates Job Number: 720-61632-1

List Source: TestAmerica Seattle
List Number: 2
List Creation: 12/05/14 10:33 AM

Creator: Tyson, Benjamin C

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	IR#1=9.9/11.3
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Calscience

WORK ORDER NUMBER: 14-12-1377

The difference is service

ResultLink)

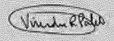
Email your PM)

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Weiss Associates

Client Project Name: LRT 2014-2015 Annual Storm Water


Sampling / 426-2026.01 Task 1.1.3

Attention: Scott Bourne

2200 Powell Street

Suite 925

Emeryville, CA 94608-1879

Approved for release on 12/23/2014 by:

Virendra Patel Project Manager

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way Carrien Grove CA 92841-1432 • TEL (714) 895-5494 • FAX (714) 894-7501 • www.calyclence.com

NELAPID 032700A LACIASS DAD FLAPID ADE 1864 (ISCHED 1702) 2005 L. CSDLAC ID. 10109 L. SCACMELID, 93/ADSOC

8

Contents

15

-	ect Name: er Number:	LRT 2014-2015 Annual Storm Water Sampling / 426-2026.01 Task 1.1.3 14-12-1377	
1	Work Ord	ler Narrative	3
2	Sample S	Summary	4
3	Detection	s Summary	5
4	4.1 EPA	mple Data	6 6 8
5		ontrol Sample Data	11 11
6	Sample A	analysis Summary	13
7	Glossary	of Terms and Qualifiers	14

Chain-of-Custody/Sample Receipt Form.....

Work Order Narrative

Work Order: 14-12-1377 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 12/13/14. They were assigned to Work Order 14-12-1377.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

New York NELAP air certification does not certify for all reported methods and analytes, reference the accredited items here: http://www.calscience.com/PDF/New_York.pdf

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Emeryville, CA 94608-1879

Sample Summary

Client: Weiss Associates Work Order: 14-12-1377

LRT 2014-2015 Annual Storm Water Sampling / 426-2026.01 Task 1.1.3 2200 Powell Street, Suite 925 Project Name:

PO Number:

Date/Time 12/13/14 09:00

Received:

Number of Containers:

Attn: Scott Bourne

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
SW-3-121114	14-12-1377-1	12/11/14 08:40	2	Aqueous
SW-4/5/6/7-121114	14-12-1377-2	12/11/14 08:46	2	Aqueous

Detections Summary

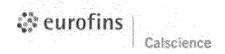
Project Name:

Client: Weiss Associates

Work Order: 14-12-1377

2200 Powell Street, Suite 925 Emeryville, CA 94608-1879

LRT 2014-2015 Annual Storm Water Sampling / 426-2026.01 Task 1.1.3


Received: 12/13/14

Attn: Scott Bourne Page 1 of 1

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
SW-3-121114 (14-12-1377-1)						
4,4'-DDD	2.3		2.2	ng/L	EPA 8081A	EPA 3510C
4,4'-DDT	3.9		2.2	ng/L	EPA 8081A	EPA 3510C
Endosulfan I	0.030	J	0.026*	ug/L	EPA 8081A	EPA 3510C
SW-4/5/6/7-121114 (14-12-1377-2)						
4,4'-DDD	3.3		1.9	ng/L	EPA 8081A	EPA 3510C
4,4'-DDT	4.9		1.9	ng/L	EPA 8081A	EPA 3510C

Subcontracted analyses, if any, are not included in this summary.

Analytical Report

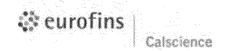
Weiss AssociatesDate Received:12/13/142200 Powell Street, Suite 925Work Order:14-12-1377Emeryville, CA 94608-1879Preparation:EPA 3510C

Method: EPA 8081A Units: ug/L

Project: LRT 2014-2015 Annual Storm Water Sampling / 426- Page 1 of 2

2026.01 Task 1.1.3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SW-3-121114	14-12-1377-1-B	12/11/14 08:40	Aqueous	GC 51	12/15/14	12/19/14 19:12	141215L04
Comment(s): - Results were eva	aluated to the MDL (DL), con-	centrations >= t	to the MDL (DL	.) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Alpha-BHC	ND		0.095	0.027	1.00		
Beta-BHC	ND		0.095	0.029	1.00		
Delta-BHC	ND		0.095	0.027	1.00		
Endosulfan I	0.03)	0.095	0.026	1.00	J	
Endrin Aldehyde	ND		0.095	0.025	1.00		
Endosulfan II	ND		0.095	0.026	1.00		
Endosulfan Sulfate	ND		0.095	0.028	1.00		
Methoxychlor	ND		0.095	0.024	1.00		
Chlordane	ND		0.95	0.31	1.00		
<u>Surrogate</u>	Rec.	(%)	Control Limits	Qualifiers	i		
Decachlorobiphenyl	90		50-135				
2,4,5,6-Tetrachloro-m-Xylene	83		50-135				


SW-4/5/6/7-12111	14		12/11/14 Aqueou 08:46	s GC 51	12/15/14	12/19/14 18:58	141215L04
Comment(s):	- Results were evaluated to	the MDL (DL), concer	ntrations >= to the MDL	(DL) but < RL (LOC), if found, are q	ualified with a	"J" flag.
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Alpha-BHC		ND	0.095	0.027	1.00		
Beta-BHC		ND	0.095	0.029	1.00		
Delta-BHC		ND	0.095	0.027	1.00		
Endosulfan I		ND	0.095	0.026	1.00		
Endrin Aldehyde		ND	0.095	0.025	1.00		
Endosulfan II		ND	0.095	0.026	1.00		
Endosulfan Sulfat	e	ND	0.095	0.028	1.00		
Methoxychlor		ND	0.095	0.024	1.00		
Chlordane		ND	0.95	0.31	1.00		
<u>Surrogate</u>		<u>Rec. (%</u>	(6) Control Lim	its Qualifiers			
Decachlorobipher	nyl	85	50-135				
2,4,5,6-Tetrachlor	o-m-Xylene	86	50-135				

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

12/13/14

14-12-1377

Analytical Report

Weiss Associates

2200 Powell Street, Suite 925

Emeryville, CA 94608-1879

Date Received:

Work Order:

Preparation:

Preparation: EPA 3510C Method: EPA 8081A

Units: ug/L Page 2 of 2

Project: LRT 2014-2015 Annual Storm Water Sampling / 426-

2026.01 Task 1.1.3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-529-763	N/A	Aqueous	GC 51	12/15/14	12/16/14 13:01	141215L04
Comment(s): - Results were evalu	uated to the MDL (DL), cor	centrations >= t	to the MDL (DL	.) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Res	<u>ult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	2	<u>Qualifiers</u>
Alpha-BHC	ND		0.10	0.028	1.00		
Beta-BHC	ND		0.10	0.030	1.00		
Delta-BHC	ND		0.10	0.029	1.00		
Endosulfan I	ND		0.10	0.028	1.00		
Endrin Aldehyde	ND		0.10	0.026	1.00		
Endosulfan II	ND		0.10	0.027	1.00		
Endosulfan Sulfate	ND		0.10	0.029	1.00		
Methoxychlor	ND		0.10	0.025	1.00		
Chlordane	ND		1.0	0.33	1.00		
Surrogate	Rec	. (%)	Control Limits	Qualifiers	1		
Decachlorobiphenyl	92		50-135				
2,4,5,6-Tetrachloro-m-Xylene	72		50-135				

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Analytical Report

Weiss Associates 2200 Powell Street, Suite 925 Emeryville, CA 94608-1879

Date Received: Work Order: Preparation: Method:

14-12-1377 EPA 3510C **EPA 8081A**

Page 1 of 3

12/13/14

Units: ng/L

Project: LRT 2014-2015 Annual Storm Water Sampling / 426-

2026.01 Task 1.1.3

2,4,5,6-Tetrachloro-m-Xylene

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SW-3-121114	14-12-1377-1-A	12/11/14 08:40	Aqueous	GC 44	12/15/14	12/19/14 14:16	141215L17
Comment(s): - Results were ev	aluated to the MDL (DL), con	centrations >= to	the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resi	<u>ılt</u> <u>I</u>	<u> </u>	MDL	<u>DF</u>	2	Qualifiers
Aldrin	ND	2	2.2	0.35	1.00		
4,4'-DDD	2.3	2	2.2	0.59	1.00		
4,4'-DDE	ND	2	2.2	0.51	1.00		
4,4'-DDT	3.9	2	2.2	0.59	1.00		
Alpha Chlordane	ND	2	2.2	0.53	1.00		
Dieldrin	ND	2	2.2	0.59	1.00		
Gamma Chlordane	ND	2	2.2	0.53	1.00		
Toxaphene	ND	2	27	8.9	1.00		
Endrin	ND	2	2.2	0.33	1.00		
Gamma-BHC	ND	2	2.2	0.50	1.00		
Heptachlor	ND	2	2.2	0.39	1.00		
Heptachlor Epoxide	ND	:	2.2	0.36	1.00		
Surrogate	Rec.	<u>(%)</u>	Control Limits	Qualifiers	i		
Decachlorobiphenyl	98		50-150				

50-150

80

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Analytical Report

Weiss Associates 2200 Powell Street, Suite 925 Emeryville, CA 94608-1879

Date Received: Work Order: Preparation: Method:

14-12-1377 EPA 3510C **EPA 8081A**

12/13/14

Units:

ng/L Page 2 of 3

Project: LRT 2014-2015 Annual Storm Water Sampling / 426-

2026.01 Task 1.1.3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SW-4/5/6/7-121114	14-12-1377-2-A	12/11/14 08:46	Aqueous	GC 44	12/15/14	12/19/14 14:30	141215L17

	Number	Collected		Prepared	Anaiyzed	
SW-4/5/6/7-121114	14-12-1377-2-A	12/11/14 <i>A</i> 08:46	Aqueous GC 44	12/15/14	12/19/14 14:30	141215L17
Comment(s): - Results wer	e evaluated to the MDL (DL), conce	entrations >= to the	e MDL (DL) but < RL	(LOQ), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>Resul</u>	<u>RL</u>	MDL	<u>DF</u>	2	<u>Qualifiers</u>
Aldrin	ND	1.9	0.31	1.00		
4,4'-DDD	3.3	1.9	0.52	1.00		
4,4'-DDE	ND	1.9	0.46	1.00		
4,4'-DDT	4.9	1.9	0.53	1.00		
Alpha Chlordane	ND	1.9	0.47	1.00		
Dieldrin	ND	1.9	0.52	1.00		
Gamma Chlordane	ND	1.9	0.47	1.00		
Toxaphene	ND	24	7.9	1.00		
Endrin	ND	1.9	0.30	1.00		
Gamma-BHC	ND	1.9	0.44	1.00		
Heptachlor	ND	1.9	0.34	1.00		
Heptachlor Epoxide	ND	1.9	0.32	1.00		
Surrogate	Rec. (<u>%)</u>	ntrol Limits Quali	<u>fiers</u>		
Decachlorobiphenyl	70	50-1	150			
2,4,5,6-Tetrachloro-m-Xylene	64	50-1	150			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Page 3 of 3

Analytical Report

Weiss AssociatesDate Received:12/13/142200 Powell Street, Suite 925Work Order:14-12-1377Emeryville, CA 94608-1879Preparation:EPA 3510C

Method: EPA 8081A

Units: ng/L

Project: LRT 2014-2015 Annual Storm Water Sampling / 426-

2026.01 Task 1.1.3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-16-036-15	N/A	Aqueous	GC 44	12/15/14	12/19/14 14:02	141215L17
Comment(s): - Results were ev	aluated to the MDL (DL), cor	centrations >= t	o the MDL (DL	.) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Res	<u>ult</u>	<u>RL</u>	MDL	<u>DF</u>	2	<u>Qualifiers</u>
Aldrin	ND		2.0	0.33	1.00		
4,4'-DDD	ND		2.0	0.55	1.00		
4,4'-DDE	ND		2.0	0.48	1.00		
4,4'-DDT	ND		2.0	0.55	1.00		
Alpha Chlordane	ND		2.0	0.49	1.00		
Dieldrin	ND		2.0	0.55	1.00		
Gamma Chlordane	ND		2.0	0.49	1.00		
Toxaphene	ND		25	8.2	1.00		
Endrin	ND		2.0	0.31	1.00		
Gamma-BHC	ND		2.0	0.46	1.00		
Heptachlor	ND		2.0	0.36	1.00		
Heptachlor Epoxide	ND		2.0	0.34	1.00		
<u>Surrogate</u>	Rec	. (%)	Control Limits	Qualifiers			
Decachlorobiphenyl	119		50-150				
2,4,5,6-Tetrachloro-m-Xylene	97		50-150				

Quality Control - LCS/LCSD

Weiss Associates 2200 Powell Street, Suite 925 Emeryville, CA 94608-1879 Date Received: Work Order: Preparation: Method: 12/13/14 14-12-1377 EPA 3510C

EPA 8081A Page 1 of 2

Project: LRT 2014-2015 Annual Storm Water Sampling / 426-

0.5000

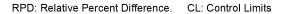
0.5172

103

2026.01 Task 1.1.3

Quality Control Sample ID	Туре		Matrix	Instr	ument	Date Prepare	ed Date A	nalyzed	LCS/LCSD Ba	tch Number
099-12-529-763	LCS		Aqueous	GC	51	12/15/14	12/16/	14 13:16	141215L04	
099-12-529-763	LCSD		Aqueous	GC	51	12/15/14	12/16/	14 12:47	141215L04	
<u>Parameter</u>	<u>Spike</u> Added	LCS Conc.	LCS <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
Alpha-BHC	0.5000	0.3526	71	0.3770	75	50-135	36-149	7	0-25	
Gamma-BHC	0.5000	0.4351	87	0.5036	101	50-135	36-149	15	0-25	
Beta-BHC	0.5000	0.4068	81	0.4097	82	50-135	36-149	1	0-25	
Heptachlor	0.5000	0.5166	103	0.5142	103	50-135	36-149	0	0-25	
Delta-BHC	0.5000	0.4398	88	0.4484	90	50-135	36-149	2	0-25	
Aldrin	0.5000	0.4957	99	0.4909	98	50-135	36-149	1	0-25	
Heptachlor Epoxide	0.5000	0.4779	96	0.4720	94	50-135	36-149	1	0-25	
Endosulfan I	0.5000	0.5183	104	0.5087	102	50-135	36-149	2	0-25	
Dieldrin	0.5000	0.4974	99	0.4955	99	50-135	36-149	0	0-25	
4,4'-DDE	0.5000	0.4530	91	0.4722	94	50-135	36-149	4	0-25	
Endrin	0.5000	0.5181	104	0.5295	106	50-135	36-149	2	0-25	
Endrin Aldehyde	0.5000	0.4444	89	0.4132	83	50-135	36-149	7	0-25	
4,4'-DDD	0.5000	0.4877	98	0.4972	99	50-135	36-149	2	0-25	
Endosulfan II	0.5000	0.4809	96	0.4845	97	50-135	36-149	1	0-25	
4,4'-DDT	0.5000	0.4566	91	0.4635	93	50-135	36-149	1	0-25	
Endosulfan Sulfate	0.5000	0.4769	95	0.4822	96	50-135	36-149	1	0-25	

0.5259


105

50-135

36-149

Total number of LCS compounds: 17
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Methoxychlor

0-25

Quality Control - LCS/LCSD

Weiss Associates 2200 Powell Street, Suite 925 Emeryville, CA 94608-1879

Date Received: Work Order: Preparation: Method:

12/13/14 14-12-1377 EPA 3510C

EPA 8081A

Page 2 of 2

Project: LRT 2014-2015 Annual Storm Water Sampling / 426-

2026.01 Task 1.1.3

Quality Control Sample ID	Type		Matrix	Inst	rument	Date Prepare	d Date A	nalyzed	LCS/LCSD Ba	tch Number
099-16-036-15	LCS		Aqueous	GC	44	12/15/14	12/22/1	14 14:04	141215L17	
099-16-036-15	LCSD	8	Aqueous	GC	44	12/15/14	12/22/1	14 14:18	141215L17	
<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	<u>LCSD</u> %Rec.	%Rec. CL	ME CL	RPD	RPD CL	<u>Qualifiers</u>
Aldrin	50.00	38.21	76	37.79	76	50-150	33-167	1	0-25	
4,4'-DDD	50.00	64.75	130	65.51	131	50-150	33-167	1	0-25	
4,4'-DDE	50.00	60.80	122	61.76	124	50-150	33-167	2	0-25	
4,4'-DDT	50.00	62.05	124	63.21	126	50-150	33-167	2	0-25	
Alpha Chlordane	50.00	54.09	108	55.01	110	50-150	33-167	2	0-25	
Dieldrin	50.00	65.14	130	65.89	132	50-150	33-167	1	0-25	
Gamma Chlordane	50.00	55.08	110	55.85	112	50-150	33-167	1	0-25	
Endrin	50.00	59.99	120	61.06	122	50-150	33-167	2	0-25	
Gamma-BHC	50.00	59.22	118	60.25	120	50-150	33-167	2	0-25	
Heptachlor	50.00	46.03	92	46.91	94	50-150	33-167	2	0-25	
Heptachlor Epoxide	50.00	59.15	118	60.08	120	50-150	33-167	2	0-25	

Total number of LCS compounds: 11 Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Sample Analysis Summary Report

Work Order: 14-12-1377				Page 1 of 1
<u>Method</u>	<u>Extraction</u>	<u>Chemist ID</u>	<u>Instrument</u>	Analytical Location
EPA 8081A	EPA 3510C	421	GC 44	1
EPA 8081A	EPA 3510C	669	GC 51	1

Glossary of Terms and Qualifiers

Work Order: 14-12-1377 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
0	Snike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike

- Q Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
- SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Sampled by: N	426-2026.01 VEC/5 (- V2/11	Task 1.1.3 }B 14		Protocol ID	/path:	J:\Levin	Richmond\(03b_Sampl	ing						
Sampled by: N	12/5/	tb Lit				i i		1							COC Number:
Sample date(s):	12/11	114			3 I										
	V2/11 s Turnaro	14													
Analysi	s Turnaro														Page of
		ınd Time:													
				3081						***************************************					" SDG number:
1	Standard			PA (
. (Sp	ecify Days or I	Iours)		alyte ides (E											
Sample Date	Sample Time	Sample Matrix	# of Cont.	An Pestic											Sample Specific Notes:
12/11/14	0840	W	2	I_{I}											
16/11/		W	2	J											
	00.0				-			-	 					-	
						_		_	-		 				
								,							
									+-+	_				-	
											ļl			-	
					-				1		1-1				
					 					_		_			
		Field	Filtered (X):											
4=HNO3; 5=NaOH; 6= Oth	er		<u> </u>	1											i ,
is: Level II Report. Re	eport with re	eporting lin	it and me	thod dete	ection lim	it. Pleas	e use agr	eed upo	on analy	tical met	hods for l	owest de	ection lin	nits.	
Company: Welsyle	۹	Date/Time:	14/15	Received	207	nal	ly			0	Company	/			12/12/14 095C
Company:		Date/Time: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	14730	Received	by:				30	<u> </u>	Company	201			12/13/14 690
Company:		Date/Time:		Received	by:					0	Company		,		Date/Time:
		1		L	0	= Samples	received fi	rom a sec	ared, lock	ed area					CANALADAM NA CANALADAM CAN
															×.
	Sample Date 12 1 (19 4=HNO ₃ ; 5=NaOH; 6= Oth is: Level II Report. Re Company: Company: Company:	Standard (Specify Days or I Sample Date Sample Time [2] [] 9940 O946 4-HNO ₃ ; 5=NaOH; 6= Other Is: Level II Report. Report with recompany: Company: Company: Company: Company:	Standard (Specify Days or Hours) Sample Date Time Matrix 12/11/19 DEYO W 12/11/19 DEYO W OOYO W Field 4-HNO3; 5=NaOH; 6= Other Is: Level II Report. Report with reporting line Company: Company: Date/Time: 12/12/ Company: Date/Time: 12/12/ Date/Time:	Sample Date Sample Matrix # of Cont. 12 1 19 00946 W 2	Standard (Specify Days or Hours) Sample Date Time Matrix # of Cont. 2 1 19 0940 W 2	Sample Date Time Matrix # of Cont. 2 12 11 19 0540 W 2 00146 W 2 Field Filtered (X): 4=HNO ₃ ; 5=NaOH; 6= Other Is: Level II Report. Report with reporting limit and method detection lim Company: Date/Time: Date/Time: Date/Time: Date/Ti	Sample Date Time Matrix # of Cont. 2 12 11 19 0540 W 2 10 0546 W 2 Field Filtered (X): 4=HNO;; 5=NaOH; 6= Other 1	Sample Date Time Matrix # of Cont. 12 1 19 0540 W 2 V	Sample Date Time Matrix # of Cont. 12 1 14 0840 W 2 1	Sample Date Time Matrix # of Cont. 2 12 1 (14 0640 W 2 12 1 0046 W 2 4-HNO3; 5=NaOH; 6= Other 1 S: Level II Report. Report with reporting limit and method detection limit. Please use agreed upon analyst limit. Please u	Sample Date Time Matrix # of Cont. 2 12 11 19 0640 W 2 J O046 W 2 Field Filtered (X): 4-HNO ₃ ; 5-NaOH; 6- Other 1 Company:	Sample Date Time Matrix # of Cont. 1	Sample Date Time Matrix # of Cont. 2 12 11/19 06/16 W 2 1 00/16 W 2 4-HNO3; 5-NaOH; 6-Other SE Level II Report. Report with reporting limit and method detection limit. Please use agreed upon analytical methods for lowest detection limit. Please use agreed upon analytical methods for lowest detection limit. Please use agreed upon analytical methods for lowest detection limit. Please use agreed upon analytical methods for lowest detection limit. Please use agreed upon analytical methods for lowest detection limit. Please use agreed upon analytical methods for lowest detection limit. Please use agreed upon analytical methods for lowest detection limit. Please use agreed upon analytical methods for lowest detection limit. Please use agreed upon analytical methods for lowest detection limit. Please use agreed upon analytical methods for lowest detection limit. Please use agreed upon analytical methods for lowest detection limit. Please use agreed upon analytical methods for lowest detection limit. Please use agreed upon analytical methods for lowest detection limit. Please use agreed upon analytical methods for lowest detection limit. Please use agreed upon analytical methods for lowest detection limit. Please use agreed upon analytical methods for lowest detection limit. Please use agreed upon analytical methods for lowest detection limit. Please use agreed upon analytical methods for lowest detection limit. Please use agreed upon analytical methods for lowest detection limit. Please use agreed upon analytical methods for lowest detection limit. Please use agreed upon analytical methods for lowest detection limit. Please use agreed upon analytical methods for lowest detection limit. Please use agreed upon analytical methods for lowest detection limit. Please use agreed upon analytical methods for lowest detection limit.	Sample Date 12 1 19 0540 W 2 9 9 9 9 9 9 9 9 9	Sample Date Time Matrix # of Cont. 2 12 1(1/14 O EY6 W 2 1 O O Y6 W 2 1 O O Y6 W 2 1 O O Y6 W 2 4 HNO,; 5-NaOH; 6-Other 1 Is: Level II Report. Report with reporting limit and method detection limit. Please use agreed upon analytical methods for lowest detection limits. Company: Date/Time: Date/Time: Date/Time: Company:

〈WebShip〉〉〉〉〉

800-322-5555 www.gso.com

Ship From: ALÁN KEMP CAL SCIENCE- CONCORD 5063 COMMERCIAL CIRCLE #H CONCORD, CA 94520

Ship To: SAMPLE RECEIVING CEL 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00

Reference:

TERRA PACIFIC GROUP, CARDNO ERI, WEISS,

SCHNITZER Delivery Instructions:

Signature Type:

SIGNATURE REQUIRED

526383285 Tracking #:

GARDEN GROVE

D92845A

Print Date: 12/12/14 15:27 PM Package 1 of 1

SDS

Send Label To Printer

☑ Print All

Edit Shipment

Finish

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

STEP 1 - Use the "Send Label to Printer" button on this page to print the shipping label on a laser or inkjet printer.

STEP 2 - Fold this page in half.

STEP 3 - Securely attach this label to your package, do not cover the barcode.

STEP 4 - Request an on-call pickup for your package, if you do not have scheduled daily pickup service or Drop-off your package at the nearest GSO drop box. Locate nearest GSO dropbox locations using this link.

ADDITIONAL OPTIONS:

Send Label Via Email

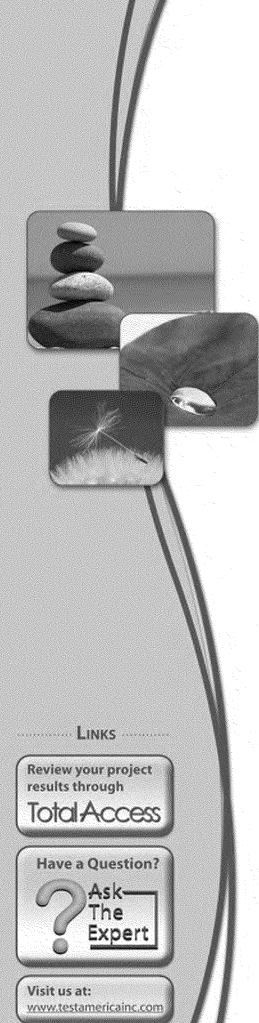
Create Return Label

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all the service terms and conditions described in this section. Our liability for loss or damage to any package is limited to your actual damages or \$100 whichever is less, unless you pay for and declare a higher authorized value. If you declare a higher value and pay the additional charge, our liability will be the lesser of your declared value or the actual value of your loss or damage. In any event, we will not be liable for any damage, whether direct, incidental, special or consequential, in excess of the declared value of a shipment whether or not we had knowledge that such damage might be incurred including but not limited to loss of income or profit. We will not be liable for your acts or omissions, including but not limited to improper or insufficient packaging, securing, marking or addressing. Also, we will not be liable if you or the recipient violates any of the terms of our agreement. We will not be liable for loss, damage or delay caused by events we cannot control, including but not limited to acts of God, perils of the air, weather conditions, act of public enemies, war, strikes, or civil commotion. The highest declared value for our GSO Priority Letter or GSO Priority Package is \$500. For other shipments the highest declared value is \$10,000 unless your package contains items of "extraordinary value", in which case the highest declared value we allow is \$500. Items of "extraordinary value" include, but or not limited to, artwork, jewelry, furs, precious metals, tickets, negotiable instruments and other items with intrinsic value.

Calscience

WORK ORDER #: 14-12- 7 3 7


SAMPLE RECEIPT FORM

Cooler <u>/</u> of <u>/</u>

CLIENT:

DATE: 12//3/14

CLIENT: DA	1E. <u>12//</u>	<u> </u>
TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0 °C – 6.0 °C, not frozen exce	ept sediment/tis	sue)
Temperature 3 • 2 °C - 0.2 °C (CF) = 3 • °C ØBla	ınk 🗌 Sam	ple
☐ Sample(s) outside temperature criteria (PM/APM contacted by:)		
☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of	sampling.	
☐ Received at ambient temperature, placed on ice for transport by Courier		
Ambient Temperature: □ Air □ Filter	Checked	i by: 80
CUSTODY SEALS INTACT:	I NI/A - Ola I	1 by: 8n
		by: 826
□ Sample □ □ No (Not Intact) ☑ Not Present	Checked	by: <u>076</u>
SAMPLE CONDITION: Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples		
COC document(s) received complete		
\square Collection date/time, matrix, and/or # of containers logged in based on sample labels.		
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.		
Sampler's name indicated on COC		
Sample container label(s) consistent with COC		
Sample container(s) intact and good condition		
Proper containers and sufficient volume for analyses requested		
Analyses received within holding time		
Aqueous samples received within 15-minute holding time		
□ pH □ Residual Chlorine □ Dissolved Sulfides □ Dissolved Oxygen □		A
Proper preservation noted on COC or sample container		
☐ Unpreserved vials received for Volatiles analysis		
Volatile analysis container(s) free of headspace □		
Tedlar bag(s) free of condensation CONTAINER TYPE:		
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores® □		
Aqueous: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp ☑1A	ĞB □1AGBna	ı₂ □1AGB s
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □1	PB □1PB na	□500PB
□250PB □250PB n □125PB □125PB znna □100PJ □100PJ na ₂ □		□
Air: □Tedlar [®] □Canister Other: □ Trip Blank Lot#: La	beled/Checked	by: 876
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope Preservative: h: HCl n: HNO2 na2:Na2S2O2 na: NaOH p: H3PO4 s: H2SO4 u: Ultra-pure znna: ZnAc2+NaOH f: F		

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566

Tel: (925)484-1919

TestAmerica Job ID: 720-61844-1

Client Project/Site: LRT 2014-2015 Annual Stormwater

Sampling

For:

Weiss Associates 2200 Powell Street Suite 925 Emeryville, California 94608

Attn: Mr. Scott Bourne

Mind R 5 Som

Authorized for release by: 12/24/2014 12:06:03 PM

Micah Smith, Project Manager II (925)484-1919

micah.smith@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

ED_000946_Recollect_00330313-00161

72

ெ

Λ

Ę

-0

10

13

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	8
QC Sample Results	17
QC Association Summary	21
Lab Chronicle	24
Certification Summary	27
Method Summary	28
Sample Summary	29
Chain of Custody	30
Receint Checklists	32

Definitions/Glossary

Client: Weiss Associates TestAmerica Job ID: 720-61844-1

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

Qualifiers

Metals

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier	Qualifier	Description

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

H Sample was prepped or analyzed beyond the specified holding time

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

TestAmerica Job ID: 720-61844-1

Job ID: 720-61844-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-61844-1

Comments

No additional comments.

Receipt

The samples were received on 12/12/2014 9:40 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 4.8° C, 5.1° C and 5.5° C.

Except:

Sample SW-12-121114 (720-61844-5) was requested as an MS/MSD for all analyses, however, an MS/MSD is not used for the analysis of TSS, Specific Conductance or pH. For these analyses we have done this samples as sample duplicate.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method(s) 1664A: All of the samples were analyzed as HEM, rather than SGT-HEM, since the samples were all below the reporting limit for HEM and did not require the silica gel treatment.

Method(s) 9040B: All samples were received past the holding time for pH.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

TestAmerica Job ID: 720-61844-1

Lab Sample ID: 720-61844-1

Client Sample	ID: TS1-E-12111	14	

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	0.60		0.50	0.17	mg/L	5	_	200.8	Total/NA
Copper	0.0028	J	0.0050	0.00055	mg/L	5		200.8	Total/NA
Iron	0.35		0.20	0.029	mg/L	5		200.8	Total/NA
Lead	0.0020		0.0020	0.00017	mg/L	5		200.8	Total/NA
Zinc	0.060		0.020	0.0095	mg/L	5		200.8	Total/NA
HEM (Oil & Grease)	1.8	J	5.4	0.59	mg/L	1		1664A	Total/NA
Total Suspended Solids	24		3.3	1.7	mg/L	1		SM 2540D	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
pH	7.37	Н	0.100	0.100	SU	1	_	9040B	Total/NA
Specific Conductance	170		1.0	1.0	umhos/cm	1		SM 2510B	Total/NA

Client Sample ID: SW-3-121114

Lab Sample ID: 720-61844-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	2.7		0.50	0.17	mg/L	5	_	200.8	Total/NA
Copper	0.013		0.0050	0.00055	mg/L	5		200.8	Total/NA
Iron	3.7		0.20	0.029	mg/L	5		200.8	Total/NA
Nickel	0.0055	J	0.015	0.0020	mg/L	5		200.8	Total/NA
Lead	0.010		0.0020	0.00017	mg/L	5		200.8	Total/NA
Zinc	0.17		0.020	0.0095	mg/L	5		200.8	Total/NA
HEM (Oil & Grease)	2.5	J	5.2	0.57	mg/L	1		1664A	Total/NA
Total Suspended Solids	280		10	5.0	mg/L	1		SM 2540D	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
pH	7.82	Н	0.100	0.100	SU	1	_	9040B	Total/NA
Specific Conductance	3100		1.0	1.0	umhos/cm	1		SM 2510B	Total/NA

Client Sample ID: SW-4/5/6/7-121114

Lab Sample ID: 720-61844-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	0.48	J	0.50	0.17	mg/L	5	_	200.8	Total/NA
Copper	0.0057		0.0050	0.00055	mg/L	5		200.8	Total/NA
Iron	0.43		0.20	0.029	mg/L	5		200.8	Total/NA
Lead	0.0019	J	0.0020	0.00017	mg/L	5		200.8	Total/NA
Zinc	0.091		0.020	0.0095	mg/L	5		200.8	Total/NA
HEM (Oil & Grease)	1.2	J	5.9	0.64	mg/L	1		1664A	Total/NA
Total Suspended Solids	20		2.0	1.0	mg/L	1		SM 2540D	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
pH	7.61	H	0.100	0.100	SU	1	_	9040B	Total/NA
Specific Conductance	540		1.0	1.0	umhos/cm	1		SM 2510B	Total/NA

Client Sample ID: SW-11-121114

Lab Sample ID: 720-61844-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Aluminum	0.24	J	0.50	0.17	mg/L	5	200.8	Total/NA
Copper	0.0055		0.0050	0.00055	mg/L	5	200.8	Total/NA
Iron	0.54		0.20	0.029	mg/L	5	200.8	Total/NA
Nickel	0.0056	J	0.015	0.0020		5	200.8	Total/NA
Lead	0.0016	J	0.0020	0.00017	mg/L	5	200.8	Total/NA
Zinc	0.084		0.020	0.0095	mg/L	5	200.8	Total/NA
HEM (Oil & Grease)	1.2	J	5.4	0.58	mg/L	1	1664A	Total/NA

This Detection Summary does not include radiochemical test results.

Detection Summary

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

Client Sample ID: SW-11-121114 (Continued) Lab Sample ID: 720-61844-4 Result Qualifier RL MDL Unit Dil Fac D Method Prep Type Total Suspended Solids 39 2.0 1.0 mg/L SM 2540D Total/NA RL Dil Fac D Analyte Result Qualifier RL Unit Method Prep Type 7.65 0.100 0.100 SU 9040B Total/NA 20000 SM 2510B Total/NA Specific Conductance 2.0 2.0 umhos/cm 2 Client Sample ID: SW-12-121114 Lab Sample ID: 720-61844-5 Qualifier MDL Unit Dil Fac D Method Analyte Result RL Prep Type 0.84 0.50 0.17 5 200.8 Aluminum mg/L Total/NA 5 Copper 0.011 0.0050 0.00055 mg/L 200.8 Total/NA Iron 1.7 0.20 0.029 mg/L 5 200.8 Total/NA Nickel 0.0060 J 0.015 0.0020 mg/L 5 200.8 Total/NA Lead 0.010 0.0020 0.00017 mg/L 5 200.8 Total/NA Zinc 0.11 0.020 0.0095 mg/L 5 200.8 Total/NA 1664A HEM (Oil & Grease) 1.3 J 5.1 0.55 mg/L 1 Total/NA SM 2540D Total/NA Total Suspended Solids 36 2.5 1.3 mg/L Result Qualifier RL Dil Fac D Method Analyte RL Unit Prep Type 7.62 H 0.100 0.100 SU 9040B Total/NA рН Specific Conductance 69 1.0 SM 2510B Total/NA 1.0 umhos/cm Client Sample ID: SHEET-1-121114 Lab Sample ID: 720-61844-6 Result Qualifier RL MDL Unit Dil Fac D Method Prep Type 1.3 Total Suspended Solids 79 0.63 mg/L SM 2540D Total/NA Client Sample ID: SHEET-2-121114 Lab Sample ID: 720-61844-7 Result Qualifier RL MDL Unit Method Dil Fac D Total Suspended Solids 51 1.3 0.63 mg/L SM 2540D Total/NA Client Sample ID: SW-11-121114-DUP Lab Sample ID: 720-61844-8 Analyte Result Qualifier RL MDL Unit Dil Fac D Method Prep Type 0.25 Aluminum 0.50 0.17 ma/L 5 200.8 Total/NA 0.0052 0.0050 0.00055 5 200.8 Total/NA Copper mg/L 0.20 5 200.8 Total/NA Iron 0.53 0.029 mg/L Nickel 0.0060 J 0.015 5 200.8 0.0020 mg/L Total/NA 5 Lead 0.0018 J 0.0020 0.00017 mg/L 200.8 Total/NA Zinc 0.087 0.020 0.0095 mg/L 5 200.8 Total/NA Total Suspended Solids 39 2.5 1.3 mg/L SM 2540D Total/NA Analyte Result Qualifier RL RL Unit Dil Fac D Method Prep Type 7.66 0.100 SU 9040B рΗ 0.100 Total/NA Specific Conductance 20000 2.0 2.0 umhos/cm 2 SM 2510B Total/NA Client Sample ID: TS1-I-121114 Lab Sample ID: 720-61844-9 Dil Fac D Analyte Result Qualifier RL MDL Unit Method Prep Type

0.50

0.20

0.0050

0.17 mg/L

0.029 mg/L

mg/L

0.00055

This Detection Summary does not include radiochemical test results.

3.2

2.2

0.0090

Aluminum

Copper

Iron

TestAmerica Pleasanton

Total/NA

Total/NA

Total/NA

TestAmerica Job ID: 720-61844-1

5

5

5

200.8

200.8

200.8

Detection Summary

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

TestAmerica Job ID: 720-61844-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Nickel	0.0037	J	0.015	0.0020	mg/L		_	200.8	Total/NA
Lead	0.010		0.0020	0.00017	mg/L	5		200.8	Total/NA
Zinc	0.13		0.020	0.0095	mg/L	5		200.8	Total/NA
HEM (Oil & Grease)	1.0	J	5.6	0.60	mg/L	1		1664A	Total/NA
Total Suspended Solids	120		8.7	4.3	mg/L	1		SM 2540D	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
pH	7.43	Н	0.100	0.100	SU	1		9040B	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Weiss Associates TestAmerica Job ID: 720-61844-1

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

Client Sample ID: TS1-E-121114

Lab Sample ID: 720-61844-1

Matrix: Water

Date	Collected:	12/11/14	09:45
Date	Received:	12/12/14	09:40

Method: 200.8 - Metals (ICP/MS) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.60		0.50	0.17	mg/L		12/17/14 10:54	12/17/14 16:37	5
Copper	0.0028	J	0.0050	0.00055	mg/L		12/17/14 10:54	12/17/14 16:37	5
Iron	0.35		0.20	0.029	mg/L		12/17/14 10:54	12/17/14 16:37	5
Nickel	ND		0.015	0.0020	mg/L		12/17/14 10:54	12/17/14 16:37	5
Lead	0.0020		0.0020	0.00017	mg/L		12/17/14 10:54	12/17/14 16:37	5
Zinc	0.060		0.020	0.0095	mg/L		12/17/14 10:54	12/17/14 16:37	5
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM (Oil & Grease)	1.8	J	5.4	0.59	mg/L		12/16/14 22:05	12/16/14 23:41	1
Total Suspended Solids	24		3.3	1.7	mg/L			12/16/14 16:16	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.37	Н	0.100	0.100	SU			12/12/14 10:37	1
Specific Conductance	170		1.0	1.0	umhos/cm			12/17/14 08:35	1

Client: Weiss Associates TestAmerica Job ID: 720-61844-1

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

Client Sample ID: SW-3-121114 Lab Sample ID: 720-61844-2

Matrix: Water

Date Collected: 12/11/14 08:40 Date Received: 12/12/14 09:40

Method: 200.8 - Metals (ICP/MS) Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	2.7		0.50	0.17	mg/L		12/17/14 10:54	12/17/14 16:40	5
Copper	0.013		0.0050	0.00055	mg/L		12/17/14 10:54	12/17/14 16:40	5
Iron	3.7		0.20	0.029	mg/L		12/17/14 10:54	12/17/14 16:40	5
Nickel	0.0055	J	0.015	0.0020	mg/L		12/17/14 10:54	12/17/14 16:40	5
Lead	0.010		0.0020	0.00017	mg/L		12/17/14 10:54	12/17/14 16:40	5
Zinc	0.17		0.020	0.0095	mg/L		12/17/14 10:54	12/17/14 16:40	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM (Oil & Grease)	2.5	J	5.2	0.57	mg/L		12/16/14 22:17	12/16/14 23:48	1
Total Suspended Solids	280		10	5.0	mg/L			12/16/14 16:16	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.82	Н	0.100	0.100	SU			12/12/14 10:44	1
Specific Conductance	3100		1.0	1.0	umhos/cm			12/17/14 08:35	1

Client: Weiss Associates TestAmerica Job ID: 720-61844-1

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

Client Sample ID: SW-4/5/6/7-121114

Lab Sample ID: 720-61844-3 Date Collected: 12/11/14 08:46 Matrix: Water

Date Received: 12/12/14 09:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.48	J	0.50	0.17	mg/L		12/17/14 10:54	12/17/14 16:44	- 5
Copper	0.0057		0.0050	0.00055	mg/L		12/17/14 10:54	12/17/14 16:44	5
Iron	0.43		0.20	0.029	mg/L		12/17/14 10:54	12/17/14 16:44	5
Nickel	ND		0.015	0.0020	mg/L		12/17/14 10:54	12/17/14 16:44	5
Lead	0.0019	J	0.0020	0.00017	mg/L		12/17/14 10:54	12/17/14 16:44	5
Zinc	0.091		0.020	0.0095	mg/L		12/17/14 10:54	12/17/14 16:44	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM (Oil & Grease)	1.2	J	5.9	0.64	mg/L		12/17/14 20:22	12/17/14 23:07	1
Total Suspended Solids	20		2.0	1.0	mg/L			12/16/14 16:16	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.61	Н	0.100	0.100	SU			12/12/14 10:52	1
Specific Conductance	540		1.0	1.0	umhos/cm			12/17/14 08:35	1

Client: Weiss Associates TestAmerica Job ID: 720-61844-1

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

Client Sample ID: SW-11-121114

Date Collected: 12/11/14 08:55 Matrix: Water

Date Received: 12/12/14 09:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.24	J	0.50	0.17	mg/L		12/17/14 10:54	12/17/14 16:48	5
Copper	0.0055		0.0050	0.00055	mg/L		12/17/14 10:54	12/17/14 16:48	5
Iron	0.54		0.20	0.029	mg/L		12/17/14 10:54	12/17/14 16:48	5
Nickel	0.0056	J	0.015	0.0020	mg/L		12/17/14 10:54	12/17/14 16:48	5
Lead	0.0016	J	0.0020	0.00017	mg/L		12/17/14 10:54	12/17/14 16:48	5
Zinc	0.084		0.020	0.0095	mg/L		12/17/14 10:54	12/17/14 16:48	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM (Oil & Grease)	1.2	J	5.4	0.58	mg/L		12/17/14 20:28	12/17/14 23:11	1
Total Suspended Solids	39		2.0	1.0	mg/L			12/16/14 16:16	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.65	Н	0.100	0.100	SU			12/12/14 10:59	1
Specific Conductance	20000		2.0	2.0	umhos/cm			12/17/14 08:35	2

TestAmerica Pleasanton

Lab Sample ID: 720-61844-4

Client: Weiss Associates TestAmerica Job ID: 720-61844-1

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

Client Sample ID: SW-12-121114 Lab Sample ID: 720-61844-5

Date Collected: 12/11/14 09:10 Matrix: Water

Date Received: 12/12/14 09:40

Method: 200.8 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.84		0.50	0.17	mg/L		12/17/14 10:54	12/17/14 16:03	5
Copper	0.011		0.0050	0.00055	mg/L		12/17/14 10:54	12/17/14 16:03	5
Iron	1.7		0.20	0.029	mg/L		12/17/14 10:54	12/17/14 16:03	5
Nickel	0.0060	J	0.015	0.0020	mg/L		12/17/14 10:54	12/17/14 16:03	5
Lead	0.010		0.0020	0.00017	mg/L		12/17/14 10:54	12/17/14 16:03	5
Zinc	0.11		0.020	0.0095	mg/L		12/17/14 10:54	12/17/14 16:03	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM (Oil & Grease)	1.3	J	5.1	0.55	mg/L		12/17/14 20:35	12/17/14 23:15	1
Total Suspended Solids	36		2.5	1.3	mg/L			12/16/14 16:16	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.62	Н	0.100	0.100	SU			12/12/14 11:03	1
Specific Conductance	69		1.0	1.0	umhos/cm			12/17/14 08:35	1

Client: Weiss Associates TestAmerica Job ID: 720-61844-1

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

Client Sample ID: SHEET-1-121114 Lab Sample ID: 720-61844-6

Date Collected: 12/11/14 07:45 Matrix: Water

Date Received: 12/12/14 09:40

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	79		1.3	0.63	mg/L			12/16/14 16:16	1

Client: Weiss Associates TestAmerica Job ID: 720-61844-1

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

Client Sample ID: SHEET-2-121114 Lab Sample ID: 720-61844-7

Date Collected: 12/11/14 07:40 Matrix: Water

Date Received: 12/12/14 09:40

General Chemistry							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	51	1.3	0.63 mg/L			12/16/14 16:16	1

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

Client Sample ID: SW-11-121114-DUP

Lab Sample ID: 720-61844-8 Date Collected: 12/11/14 09:00 Matrix: Water

Date Received: 12/12/14 09:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.25	J	0.50	0.17	mg/L		12/17/14 10:54	12/17/14 16:52	5
Copper	0.0052		0.0050	0.00055	mg/L		12/17/14 10:54	12/17/14 16:52	5
Iron	0.53		0.20	0.029	mg/L		12/17/14 10:54	12/17/14 16:52	5
Nickel	0.0060	J	0.015	0.0020	mg/L		12/17/14 10:54	12/17/14 16:52	5
Lead	0.0018	J	0.0020	0.00017	mg/L		12/17/14 10:54	12/17/14 16:52	5
Zinc	0.087		0.020	0.0095	mg/L		12/17/14 10:54	12/17/14 16:52	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM (Oil & Grease)	ND		5.3	0.58	mg/L		12/17/14 20:53	12/17/14 23:27	1
Total Suspended Solids	39		2.5	1.3	mg/L			12/16/14 16:16	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.66	Н	0.100	0.100	SU			12/12/14 11:27	1
Specific Conductance	20000		2.0	2.0	umhos/cm			12/17/14 08:35	2

TestAmerica Pleasanton

TestAmerica Job ID: 720-61844-1

Client: Weiss Associates TestAmerica Job ID: 720-61844-1

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

Client Sample ID: TS1-I-121114 Lab Sample ID: 720-61844-9

Matrix: Water

Date Collected: 12/11/14 09:40 Date Received: 12/12/14 09:40

Method: 200.8 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	3.2		0.50	0.17	mg/L		12/17/14 10:54	12/17/14 16:55	- 5
Copper	0.0090		0.0050	0.00055	mg/L		12/17/14 10:54	12/17/14 16:55	5
Iron	2.2		0.20	0.029	mg/L		12/17/14 10:54	12/17/14 16:55	5
Nickel	0.0037	J	0.015	0.0020	mg/L		12/17/14 10:54	12/17/14 16:55	5
Lead	0.010		0.0020	0.00017	mg/L		12/17/14 10:54	12/17/14 16:55	5
Zinc	0.13		0.020	0.0095	mg/L		12/17/14 10:54	12/17/14 16:55	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM (Oil & Grease)	1.0	J	5.6	0.60	mg/L		12/17/14 21:00	12/17/14 23:31	1
Total Suspended Solids	120		8.7	4.3	mg/L			12/16/14 16:16	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.43	Н	0.100	0.100	SU			12/12/14 11:35	1

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

TestAmerica Job ID: 720-61844-1

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 580-178381/21-A

Matrix: Water

Analysis Batch: 178563

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 178381

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.10	0.034	mg/L		12/17/14 10:54	12/17/14 15:51	1
Copper	ND		0.0010	0.00011	mg/L		12/17/14 10:54	12/17/14 15:51	1
Iron	ND		0.040	0.0058	mg/L		12/17/14 10:54	12/17/14 15:51	1
Nickel	ND		0.0030	0.00040	mg/L		12/17/14 10:54	12/17/14 15:51	1
Lead	ND		0.00040	0.000034	ma/l		12/17/14 10:54	12/17/14 15:51	1

0.0040

ND

Lab Sample ID: LCS 580-178381/22-A

Matrix: Water

Zinc

Analyte

Copper

Iron

Nickel

Lead

Zinc

Aluminum

Analysis Batch: 178563

Client Sample ID: Lab Control Sample

12/17/14 15:51

12/17/14 10:54

Prep Type: Total/NA Prep Batch: 178381

Spike LCS LCS %Rec. Added Result Qualifier Unit Limits %Rec 1.00 0.980 85 - 115 98 mg/L 0.100 0.0952 mg/L 95 85 - 115 10.0 9,31 93 85 - 115 mg/L 0.100 0.0926 93 mg/L 85 - 115 0.100 0.0901 mg/L 85 - 115 0.100 0.0926 mg/L 93 85 - 115

0.0019 mg/L

Lab Sample ID: LCSD 580-178381/23-A

Matrix: Water

Analysis Batch: 178563

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 178381

LCSD LCSD Spike %Rec. RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit 1.00 Aluminum 0.984 mg/L 98 85 - 115 0 20 0.100 0.0939 Copper 94 85 _ 115 20 mg/L Iron 10.0 9.47 95 85 - 115 20 mg/L Nickel 0.100 0.0922 92 85_115 0 20 mg/L Lead 0.100 0.0892 mg/L 89 85 _ 115 20 Zinc 0.100 0.0917 mg/L 85 _ 115 20

Lab Sample ID: 720-61844-5 MS

Matrix: Water

Analysis Batch: 178563

Client Sample ID: SW-12-121114

Prep Type: Total/NA

Prep Batch: 178381

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	0.84		1.00	2.00		mg/L		116	70 - 130	
Copper	0.011		0.100	0.108		mg/L		97	70 - 130	
Iron	1.7		10.0	11.7		mg/L		100	70 _ 130	
Nickel	0.0060	J	0.100	0.103		mg/L		97	70 - 130	
Lead	0.010		0.100	0.107		mg/L		96	70 - 130	
Zinc	0.11		0.100	0.200		mg/L		90	70 _ 130	

Lab Sample ID: 720-61844-5 MSD

Matrix: Water

Analysis Batch: 178563

Client Sample ID: SW-12-121114 Prep Type: Total/NA

Prep Batch: 178381 D

•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	0.84		1.00	2.07		mg/L		123	70 - 130	4	20

Client: Weiss Associates TestAmerica Job ID: 720-61844-1

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

Lab Sample ID: 720-61844-5 MSD Client Sample ID: SW-12-121114

Matrix: Water

Prep Type: Total/NA Analysis Batch: 178563

Prep Batch: 178381

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Copper	0.011		0.100	0.108		mg/L		97	70 _ 130	0	20
Iron	1.7		10.0	11.8		mg/L		101	70 - 130	1	20
Nickel	0.0060	J	0.100	0.104		mg/L		98	70 _ 130	0	20
Lead	0.010		0.100	0.106		mg/L		95	70 _ 130	1	20
Zinc	0.11		0.100	0.203		mg/L		93	70 - 130	1	20

Lab Sample ID: 720-61844-5 DU Client Sample ID: SW-12-121114

Matrix: Water

Prep Type: Total/NA Analysis Batch: 178563

Prep Batch: 178381

Allalysis Datoll. 170000							rich Datell. I	10001
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Aluminum	0.84		0.827		mg/L			20
Copper	0.011		0.0105		mg/L		1	20
Iron	1.7		1.69		mg/L		1	20
Nickel	0.0060	J	0.00611	J	mg/L		1	20
Lead	0.010		0.0105		mg/L		0.2	20
Zinc	0.11		0.108		mg/L		2	20
termina de la companya del companya de la companya del companya de la companya de								

Method: 1664A - HEM and SGT-HEM

Lab Sample ID: MB 500-268840/1-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 268841 Prep Batch: 268840

Prep Type: Total/NA

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
HEM (Oil & Grease)	ND —	5.0	0.54 mg/L		12/16/14 20:10	12/16/14 22:35	1

Lab Sample ID: LCS 500-268840/2-A Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 268841 Spike LCS LCS %Rec.

мв мв

Prep Batch: 268840

Analyte Added Result Qualifier Unit %Rec Limits 40.0 HEM (Oil & Grease) 37.0 93 78 _ 114 ma/L

Lab Sample ID: 720-61844-1 MS Client Sample ID: TS1-E-121114

Matrix: Water Prep Type: Total/NA Prep Batch: 268840 Analysis Batch: 268841

Spike MS MS Sample Sample %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits HEM (Oil & Grease) 1.8 J 43.1 37.4 82 78 - 114

Client Sample ID: Method Blank Lab Sample ID: MB 500-269007/1-A

Matrix: Water Prep Type: Total/NA

Analysis Batch: 269008 Prep Batch: 269007 мв мв

mg/L

Result Qualifier RL MDL Unit Analyte ח Prepared Analyzed Dil Fac HEM (Oil & Grease) ND 5.0 0.54 mg/L 12/17/14 20:10 12/17/14 23:00

Client: Weiss Associates TestAmerica Job ID: 720-61844-1

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

Lab Sample ID: LCS 500-269007/2-	-Α								Clie	nt	Sample	ID: Lab C	ontrol S	ample
Matrix: Water	• •												Гуре: То	-
Analysis Batch: 269008												-	Batch: 2	
,				Spike	LC:	S LC	s					%Rec.		
Analyte				Added	Resu	t Qı	ualifier	Unit	ı	D	%Rec	Limits		
HEM (Oil & Grease)				40.0	39.	1		mg/L		_	98	78 - 114		
Lab Sample ID: 720-61844-5 MS											Client S:	ample ID:	SW-12-1	121114
Matrix: Water											Onone o	-	Гуре: То	
Analysis Batch: 269008												-	Batch: 2	
	Sample	Samı	ole	Spike	M	s Ms	S					%Rec.		
Analyte	Result	Qual	ifier	Added	Resu	t Qi	ualifier	Unit	ı	D	%Rec	Limits		
HEM (Oil & Grease)	1.3	J		40.7	35.	1 —		mg/L		_	84	78 - 114		
Lab Sample ID: 720-61844-5 MSD											Cliant S	ample ID:	SW-12-4	12444
Matrix: Water										,	Onene or	•	Гуре: То	
Analysis Batch: 269008												-	Batch: 2	
Analysis Daton. 203000	Sample	Sami	ole	Spike	MSI) MS	SD					%Rec.	Daton, z	RPD
Analyte	Result			Added			 ualifier	Unit		D	%Rec	Limits	RPD	Limit
HEM (Oil & Grease)	1.3	J		40.6	37.	5		mg/L		_	89	78 - 114	6	18
lethod: 9040B - pH														
Lab Sample ID: LCS 720-172556/1									Clie	nt	Sample	ID: Lab C	ontrol S	ample
Matrix: Water												Prep 7	Гуре: То	tal/NA
Analysis Batch: 172556														
				Spike		S LC						%Rec.		
Analyte				Added			ıalifier	Unit	!	D	%Rec	Limits		
рН				7.00	7.00)		SU			100	99 _ 101		
											Cliant C			
Lab Sample ID: 720-61844-5 DU										,	Chenr 2	ampie iu:	SW-12-1	121114
-										,	Chent S	-		
Matrix: Water										,	Chefft 3	-	SW-12-1 Type: To	
Matrix: Water	Sample	Samı	ole		ום	J DL	j			•	Chefit 3	-		
Matrix: Water	Sample Result						J ualifier	Unit		D	Cheff S	-		tal/NA
Matrix: Water Analysis Batch: 172556 Analyte		Qual				t Qu		Unit SU				-	Гуре: То	tal/NA RPD
Matrix: Water Analysis Batch: 172556 Analyte pH	Result 7.62	Qual	ifier	ductanc	Resu 7.55	t Qu						-	Type: To	tal/NA RPD Limit
Analysis Batch: 172556 Analyte pH Method: SM 2510B - Conducti	Result 7.62	Qual	ifier	ductanc	Resu 7.55	t Qu			1	D		Prep 1	RPD 0.9	RPD Limit
Matrix: Water Analysis Batch: 172556 Analyte pH Method: SM 2510B - Conducti Lab Sample ID: MB 440-225216/3	Result 7.62	Qual	ifier	ductanc	Resu 7.55	t Qu			<u> </u>	D		Prep 1	RPD 0.9	RPD Limit 5
Matrix: Water Analysis Batch: 172556 Analyte pH Method: SM 2510B - Conducti Lab Sample ID: MB 440-225216/3 Matrix: Water	Result 7.62	Qual	ifier	ductanc	Resu 7.55	t Qu				D		Prep 1	RPD 0.9	RPD Limit 5
Matrix: Water Analysis Batch: 172556 Analyte pH Method: SM 2510B - Conducti Lab Sample ID: MB 440-225216/3	Result 7.62	Qual	ic Cond	ductanc	Resu 7.55	t Qu				D		Prep 1	RPD 0.9	RPD Limit 5
Matrix: Water Analysis Batch: 172556 Analyte pH Method: SM 2510B - Conducti Lab Sample ID: MB 440-225216/3 Matrix: Water Analysis Batch: 225216	Result 7.62 vity, S	Qual H	ic Cond	ductanc	Resu 7.55	t Qu				D		Prep 1	RPD 0.9 Method Type: To	RPD Limit 5
Matrix: Water Analysis Batch: 172556 Analyte pH Method: SM 2510B - Conducti Lab Sample ID: MB 440-225216/3 Matrix: Water Analysis Batch: 225216 Analyte	Result 7.62 vity, S	Qual H	ic Cond	ductanc	Resu 7.55	t Qu	ualifier	SU		D	Client S	Prep 1	RPD 0.9 Method Type: To	RPD Limit 5 Blank
Matrix: Water Analysis Batch: 172556 Analyte pH Method: SM 2510B - Conducti Lab Sample ID: MB 440-225216/3 Matrix: Water Analysis Batch: 225216 Analyte Specific Conductance	Result 7.62 vity, S	Qual H Decif	ic Cond	ductanc	Resu 7.55	t Qu	ualifier	SU	D	Pi	Client S	ample ID: Prep T Analy: 12/17/14	RPD 0.9 Method Type: To	RPD Limit 5 Blank stal/NA
Matrix: Water Analysis Batch: 172556 Analyte pH Method: SM 2510B - Conducti Lab Sample ID: MB 440-225216/3 Matrix: Water Analysis Batch: 225216 Analyte Specific Conductance	Result 7.62 vity, S	Qual H Decif	ic Cond	ductanc	Resu 7.55	t Qu	ualifier	SU	D	Pi	Client S	ample ID: Prep T Analyz 12/17/14 ID: Lab C	RPD 0.9 Method Type: To zed 08:35	Blank tal/NA Dil Fac
Matrix: Water Analysis Batch: 172556 Analyte pH Method: SM 2510B - Conducti Lab Sample ID: MB 440-225216/3 Matrix: Water Analysis Batch: 225216 Analyte Specific Conductance Lab Sample ID: LCS 440-225216/4 Matrix: Water	Result 7.62 vity, S	Qual H Decif	ic Cond	ductanc	Resu 7.55	t Qu	ualifier	SU	D	Pi	Client S	ample ID: Prep T Analyz 12/17/14 ID: Lab C	RPD 0.9 Method Type: To	Blank tal/NA Dil Fac
Matrix: Water Analysis Batch: 172556 Analyte pH Method: SM 2510B - Conducti Lab Sample ID: MB 440-225216/3 Matrix: Water Analysis Batch: 225216 Analyte Specific Conductance Lab Sample ID: LCS 440-225216/4	Result 7.62 vity, S	Qual H Decif	ic Cond	ductanc	Resu 7.55 RL 1.0	t Qu	L Unit	SU	D	Pi	Client S	ample ID: Prep T Analyz 12/17/14 ID: Lab C	RPD 0.9 Method Type: To zed 08:35	Blank tal/NA Dil Fac
Matrix: Water Analysis Batch: 172556 Analyte pH Method: SM 2510B - Conducti Lab Sample ID: MB 440-225216/3 Matrix: Water Analysis Batch: 225216 Analyte Specific Conductance Lab Sample ID: LCS 440-225216/4 Matrix: Water	Result 7.62 vity, S	Qual H Decif	ic Cond		Resu 7.55 RL 1.0	R R 1.	L Unit	SU	D	Pi	Client S	ample ID: Prep T Analy: 12/17/14 ID: Lab C Prep T	RPD 0.9 Method Type: To zed 08:35	Blank tal/NA Dil Fac

Client: Weiss Associates TestAmerica Job ID: 720-61844-1

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

Method: SM 2510B - Conductivity, Specific Conductance (Continued)

Lab Sample ID: 720-61844-5 DU Client Sample ID: SW-12-121114 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 225216

DU DU RPD Sample Sample Analyte Result Qualifier Result Qualifier Unit RPD Limit Specific Conductance 69 70.8 umhos/cm 5

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 440-225094/2 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 225094

MB MB

Analyte RL MDL Unit D Dil Fac Result Qualifier Prepared Analyzed 1.0 Total Suspended Solids 12/16/14 16:16 ND 0.50 mg/L

Lab Sample ID: LCS 440-225094/1 Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 225094

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Total Suspended Solids 1000 1030 mg/L 103 85 - 115

Lab Sample ID: 720-61844-5 DU Client Sample ID: SW-12-121114

Matrix: Water

Analysis Batch: 225094

DU DU RPD Sample Sample Analyte Result Qualifier Result Qualifier Unit RPD Limit Total Suspended Solids 36 35.8 10 mg/L

TestAmerica Pleasanton

Prep Type: Total/NA

Prep Type: Total/NA

QC Association Summary

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

TestAmerica Job ID: 720-61844-1

Metals

Prep Batch: 178381

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-61844-1	TS1-E-121114	Total/NA	Water	200.8	
720-61844-2	SW-3-121114	Total/NA	Water	200.8	
720-61844-3	SW-4/5/6/7-121114	Total/NA	Water	200.8	
720-61844-4	SW-11-121114	Total/NA	Water	200.8	
720-61844-5	SW-12-121114	Total/NA	Water	200.8	
720-61844-5 DU	SW-12-121114	Total/NA	Water	200.8	
720-61844-5 MS	SW-12-121114	Total/NA	Water	200.8	
720-61844-5 MSD	SW-12-121114	Total/NA	Water	200.8	
720-61844-8	SW-11-121114-DUP	Total/NA	Water	200.8	
720-61844-9	TS1-I-121114	Total/NA	Water	200.8	
LCS 580-178381/22-A	Lab Control Sample	Total/NA	Water	200.8	
LCSD 580-178381/23-A	Lab Control Sample Dup	Total/NA	Water	200.8	
MB 580-178381/21-A	Method Blank	Total/NA	Water	200.8	

Analysis Batch: 178563

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-61844-1	TS1-E-121114	Total/NA	Water	200.8	178381
720-61844-2	SW-3-121114	Total/NA	Water	200.8	178381
720-61844-3	SW-4/5/6/7-121114	Total/NA	Water	200.8	178381
720-61844-4	SW-11-121114	Total/NA	Water	200.8	178381
720-61844-5	SW-12-121114	Total/NA	Water	200.8	178381
720-61844-5 DU	SW-12-121114	Total/NA	Water	200.8	178381
720-61844-5 MS	SW-12-121114	Total/NA	Water	200.8	178381
720-61844-5 MSD	SW-12-121114	Total/NA	Water	200.8	178381
720-61844-8	SW-11-121114-DUP	Total/NA	Water	200.8	178381
720-61844-9	TS1-I-121114	Total/NA	Water	200.8	178381
LCS 580-178381/22-A	Lab Control Sample	Total/NA	Water	200.8	178381
LCSD 580-178381/23-A	Lab Control Sample Dup	Total/NA	Water	200.8	178381
MB 580-178381/21-A	Method Blank	Total/NA	Water	200.8	178381

General Chemistry

Analysis Batch: 172556

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-61844-1	TS1-E-121114	Total/NA	Water	9040B	
720-61844-2	SW-3-121114	Total/NA	Water	9040B	
720-61844-3	SW-4/5/6/7-121114	Total/NA	Water	9040B	
720-61844-4	SW-11-121114	Total/NA	Water	9040B	
720-61844-5	SW-12-121114	Total/NA	Water	9040B	
720-61844-5 DU	SW-12-121114	Total/NA	Water	9040B	
720-61844-8	SW-11-121114-DUP	Total/NA	Water	9040B	
720-61844-9	TS1-I-121114	Total/NA	Water	9040B	
LCS 720-172556/1	Lab Control Sample	Total/NA	Water	9040B	

Analysis Batch: 225094

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-61844-1	TS1-E-121114	Total/NA	Water	SM 2540D	
720-61844-2	SW-3-121114	Total/NA	Water	SM 2540D	
720-61844-3	SW-4/5/6/7-121114	Total/NA	Water	SM 2540D	
720-61844-4	SW-11-121114	Total/NA	Water	SM 2540D	

QC Association Summary

Client: Weiss Associates TestAmerica Job ID: 720-61844-1

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

General Chemistry (Continued)

Analysis	Ratch:	225094	(Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-61844-5	SW-12-121114	Total/NA	Water	SM 2540D	
720-61844-5 DU	SW-12-121114	Total/NA	Water	SM 2540D	
720-61844-6	SHEET-1-121114	Total/NA	Water	SM 2540D	
720-61844-7	SHEET-2-121114	Total/NA	Water	SM 2540D	
720-61844-8	SW-11-121114-DUP	Total/NA	Water	SM 2540D	
720-61844-9	TS1-I-121114	Total/NA	Water	SM 2540D	
LCS 440-225094/1	Lab Control Sample	Total/NA	Water	SM 2540D	
MB 440-225094/2	Method Blank	Total/NA	Water	SM 2540D	

Analysis Batch: 225216

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
720-61844-1	TS1-E-121114	Total/NA	Water	SM 2510B	
720-61844-2	SW-3-121114	Total/NA	Water	SM 2510B	
720-61844-3	SW-4/5/6/7-121114	Total/NA	Water	SM 2510B	
720-61844-4	SW-11-121114	Total/NA	Water	SM 2510B	
720-61844-5	SW-12-121114	Total/NA	Water	SM 2510B	
720-61844-5 DU	SW-12-121114	Total/NA	Water	SM 2510B	
720-61844-8	SW-11-121114-DUP	Total/NA	Water	SM 2510B	
LCS 440-225216/4	Lab Control Sample	Total/NA	Water	SM 2510B	
MB 440-225216/3	Method Blank	Total/NA	Water	SM 2510B	

Prep Batch: 268840

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-61844-1	TS1-E-121114	Total/NA	Water	1664A	
720-61844-1 MS	TS1-E-121114	Total/NA	Water	1664A	
720-61844-2	SW-3-121114	Total/NA	Water	1664A	
LCS 500-268840/2-A	Lab Control Sample	Total/NA	Water	1664A	
MB 500-268840/1-A	Method Blank	Total/NA	Water	1664A	

Analysis Batch: 268841

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-61844-1	TS1-E-121114	Total/NA	Water	1664A	268840
720-61844-1 MS	TS1-E-121114	Total/NA	Water	1664A	268840
720-61844-2	SW-3-121114	Total/NA	Water	1664A	268840
LCS 500-268840/2-A	Lab Control Sample	Total/NA	Water	1664A	268840
MB 500-268840/1-A	Method Blank	Total/NA	Water	1664A	268840

Prep Batch: 269007

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-61844-3	SW-4/5/6/7-121114	Total/NA	Water	1664A	
720-61844-4	SW-11-121114	Total/NA	Water	1664A	
720-61844-5	SW-12-121114	Total/NA	Water	1664A	
720-61844-5 MS	SW-12-121114	Total/NA	Water	1664A	
720-61844-5 MSD	SW-12-121114	Total/NA	Water	1664A	
720-61844-8	SW-11-121114-DUP	Total/NA	Water	1664A	
720-61844-9	TS1-I-121114	Total/NA	Water	1664A	
LCS 500-269007/2-A	Lab Control Sample	Total/NA	Water	1664A	
MB 500-269007/1-A	Method Blank	Total/NA	Water	1664A	

QC Association Summary

Client: Weiss Associates TestAmerica Job ID: 720-61844-1

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

General Chemistry (Continued)

Analysis Batch: 269008

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-61844-3	SW-4/5/6/7-121114	Total/NA	Water	1664A	269007
720-61844-4	SW-11-121114	Total/NA	Water	1664A	269007
720-61844-5	SW-12-121114	Total/NA	Water	1664A	269007
720-61844-5 MS	SW-12-121114	Total/NA	Water	1664A	269007
720-61844-5 MSD	SW-12-121114	Total/NA	Water	1664A	269007
720-61844-8	SW-11-121114-DUP	Total/NA	Water	1664A	269007
720-61844-9	TS1-I-121114	Total/NA	Water	1664A	269007
LCS 500-269007/2-A	Lab Control Sample	Total/NA	Water	1664A	269007
MB 500-269007/1-A	Method Blank	Total/NA	Water	1664A	269007

Lab Chronicle

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

Lab Sample ID: 720-61844-1

TestAmerica Job ID: 720-61844-1

Matrix: Water

Matrix: Water

Client Sample ID: TS1-E-121114

Date Collected: 12/11/14 09:45 Date Received: 12/12/14 09:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	200.8			178381	12/17/14 10:54	PAB	TAL SEA
Total/NA	Analysis	200.8		5	178563	12/17/14 16:37	FCW	TAL SEA
Total/NA	Prep	1664A			268840	12/16/14 22:05	SJS	TAL CHI
Total/NA	Analysis	1664A		1	268841	12/16/14 23:41	SJS	TAL CHI
Total/NA	Analysis	9040B		1	172556	12/12/14 10:37	MJK	TAL PLS
Total/NA	Analysis	SM 2510B		1	225216	12/17/14 08:35	XL	TAL IRV
Total/NA	Analysis	SM 2540D		1	225094	12/16/14 16:16	NTN	TAL IRV

Client Sample ID: SW-3-121114

Date Collected: 12/11/14 08:40

Date Received: 12/12/14 09:40

Lab Sample ID: 720-61844-2

TAL SEA

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	200.8			178381	12/17/14 10:54	PAB	TAL SEA
Total/NA	Analysis	200.8		5	178563	12/17/14 16:40	FCW	TAL SEA
Total/NA	Prep	1664A			268840	12/16/14 22:17	SJS	TAL CHI
Total/NA	Analysis	1664A		1	268841	12/16/14 23:48	SJS	TAL CHI
Total/NA	Analysis	9040B		1	172556	12/12/14 10:44	MJK	TAL PLS
Total/NA	Analysis	SM 2510B		1	225216	12/17/14 08:35	XL	TAL IRV
Total/NA	Analysis	SM 2540D		1	225094	12/16/14 16:16	NTN	TAL IRV
	,			1		/=/		

Client Sample ID: SW-4/5/6/7-121114

Date Collected: 12/11/14 08:46

Date Received: 12/12/14 09:40

Lab Sample ID: 720-61844-3

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	200.8			178381	12/17/14 10:54	PAB	TAL SEA
Total/NA	Analysis	200.8		5	178563	12/17/14 16:44	FCW	TAL SEA
Total/NA	Prep	1664A			269007	12/17/14 20:22	SJS	TAL CHI
Total/NA	Analysis	1664A		1	269008	12/17/14 23:07	SJS	TAL CHI
Total/NA	Analysis	9040B		1	172556	12/12/14 10:52	MJK	TAL PLS
Total/NA	Analysis	SM 2510B		1	225216	12/17/14 08:35	XL	TAL IRV
Total/NA	Analysis	SM 2540D		1	225094	12/16/14 16:16	NTN	TAL IRV

Client Sample ID: SW-11-121114

Date Collected: 12/11/14 08:55

Date Received: 12/12/14 09:40

Lab Sample ID: 720-61844-4

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	200.8		· -	178381	12/17/14 10:54	PAB	TAL SEA
Total/NA	Analysis	200.8		5	178563	12/17/14 16:48	FCW	TAL SEA
Total/NA	Prep	1664A			269007	12/17/14 20:28	SJS	TAL CHI

Lab Chronicle

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

Client Sample ID: SW-11-121114 Lab Sample ID: 720-61844-4

Date Collected: 12/11/14 08:55

Date Received: 12/12/14 09:40

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	1664A		1	269008	12/17/14 23:11	SJS	TAL CHI
Total/NA	Analysis	9040B		1	172556	12/12/14 10:59	MJK	TAL PLS
Total/NA	Analysis	SM 2510B		2	225216	12/17/14 08:35	XL	TAL IRV
Total/NA	Analysis	SM 2540D		1	225094	12/16/14 16:16	NTN	TAL IRV

Client Sample ID: SW-12-121114 Lab Sample ID: 720-61844-5

Date Collected: 12/11/14 09:10 Matrix: Water Date Received: 12/12/14 09:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	200.8			178381	12/17/14 10:54	PAB	TAL SEA
Total/NA	Analysis	200.8		5	178563	12/17/14 16:03	FCW	TAL SEA
Total/NA	Prep	1664A			269007	12/17/14 20:35	SJS	TAL CHI
Total/NA	Analysis	1664A		1	269008	12/17/14 23:15	SJS	TAL CHI
Total/NA	Analysis	9040B		1	172556	12/12/14 11:03	MJK	TAL PLS
Total/NA	Analysis	SM 2510B		1	225216	12/17/14 08:35	XL	TAL IRV
Total/NA	Analysis	SM 2540D		1	225094	12/16/14 16:16	NTN	TAL IRV

Client Sample ID: SHEET-1-121114 Lab Sample ID: 720-61844-6

Date Collected: 12/11/14 07:45 Matrix: Water

Date Received: 12/12/14 09:40

		Batch	Batch		Dilution	Batch	Prepared		
Pre	р Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Tot	al/NA	Analysis	SM 2540D			225094	12/16/14 16:16	NTN	TAL IRV

Client Sample ID: SHEET-2-121114 Lab Sample ID: 720-61844-7

Date Collected: 12/11/14 07:40 Matrix: Water

Date Received: 12/12/14 09:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540D		1	225094	12/16/14 16:16	NTN	TAL IRV

Client Sample ID: SW-11-121114-DUP

Lab Sample ID: 720-61844-8

Date Collected: 12/11/14 09:00 Matrix: Water
Date Received: 12/12/14 09:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	200.8			178381	12/17/14 10:54	PAB	TAL SEA
Total/NA	Analysis	200.8		5	178563	12/17/14 16:52	FCW	TAL SEA
Total/NA	Prep	1664A			269007	12/17/14 20:53	SJS	TAL CHI
Total/NA	Analysis	1664A		1	269008	12/17/14 23:27	SJS	TAL CHI
Total/NA	Analysis	9040B		1	172556	12/12/14 11:27	MJK	TAL PLS

TestAmerica Pleasanton

TestAmerica Job ID: 720-61844-1

Lab Chronicle

Client: Weiss Associates TestAmerica Job ID: 720-61844-1

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

Client Sample ID: SW-11-121114-DUP

Lab Sample ID: 720-61844-8 Date Collected: 12/11/14 09:00 Matrix: Water

Date Received: 12/12/14 09:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2510B			225216	12/17/14 08:35	XL	TAL IRV
Total/NA	Analysis	SM 2540D		1	225094	12/16/14 16:16	NTN	TAL IRV

Client Sample ID: TS1-I-121114 Lab Sample ID: 720-61844-9

Date Collected: 12/11/14 09:40 Matrix: Water

Date Received: 12/12/14 09:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	200.8			178381	12/17/14 10:54	PAB	TAL SEA
Total/NA	Analysis	200.8		5	178563	12/17/14 16:55	FCW	TAL SEA
Total/NA	Prep	1664A			269007	12/17/14 21:00	SJS	TAL CHI
Total/NA	Analysis	1664A		1	269008	12/17/14 23:31	SJS	TAL CHI
Total/NA	Analysis	9040B		1	172556	12/12/14 11:35	MJK	TAL PLS
Total/NA	Analysis	SM 2540D		1	225094	12/16/14 16:16	NTN	TAL IRV

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Certification Summary

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

TestAmerica Job ID: 720-61844-1

Laboratory: TestAmerica Pleasanton

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

uthority	Program		EPA Region	Certification ID	Expiration Date
alifornia	State Prog	ram	9	2496	01-31-16
	Prep Method	Matrix	Analyt		

Laboratory: TestAmerica Chicago

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alabama	State Program	4	40461	04-30-15
California	State Program	9	2903	04-30-15
Georgia	State Program	4	N/A	04-30-15
Georgia	State Program	4	939	04-30-15
Hawaii	State Program	9	N/A	04-30-15
Illinois	NELAP	5	100201	04-30-15
Indiana	State Program	5	C-IL-02	04-30-15
lowa	State Program	7	82	05-01-16
Kansas	NELAP	7	E-10161	01-31-15 *
Kentucky (UST)	State Program	4	66	04-30-15
Kentucky (WW)	State Program	4	KY90023	12-31-14 *
Massachusetts	State Program	1	M-IL035	06-30-15
Mississippi	State Program	4	N/A	04-30-15
New York	NELAP	2	IL00035	03-31-15
North Carolina (WW/SW)	State Program	4	291	12-31-14 *
North Dakota	State Program	8	R-194	04-30-15
Oklahoma	State Program	6	8908	08-31-15
South Carolina	State Program	4	77001	04-30-15
USDA	Federal		P330-12-00038	02-06-15
Wisconsin	State Program	5	999580010	08-31-15 *
Wyoming	State Program	8	8TMS-Q	04-30-15

Laboratory: TestAmerica Irvine

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	State Program	9	2706	06-30-16

Laboratory: TestAmerica Seattle

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date		
Alaska (UST)	State Program	10	UST-022	03-04-15		
California	State Program	9	2901	01-31-15		
L-A-B	DoD ELAP		L2236	01-19-16		
L-A-B	ISO/IEC 17025		L2236	01-19-16		
Montana (UST)	State Program	8	N/A	04-30-20		
Oregon	NELAP	10	WA100007	11-06-15		
US Fish & Wildlife	Federal		LE192332-0	02-28-16		
USDA	Federal		P330-11-00222	04-08-17		
Washington	State Program	10	C553	02-17-15		

^{*} Certification renewal pending - certification considered valid.

Method Summary

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

TestAmerica Job ID: 720-61844-1

Method	Method Description	Protocol	Laboratory
200.8	Metals (ICP/MS)	EPA	TAL SEA
1664A	HEM and SGT-HEM	1664A	TAL CHI
9040B	рН	SW846	TAL PLS
SM 2510B	Conductivity, Specific Conductance	SM	TAL IRV
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL IRV

Protocol References:

1664A = EPA-821-98-002

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Sample Summary

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

Client Sample ID Lab Sample ID Matrix Collected Received 12/11/14 09:45 12/12/14 09:40 720-61844-1 TS1-E-121114 Water 720-61844-2 SW-3-121114 Water 12/11/14 08:40 12/12/14 09:40 720-61844-3 SW-4/5/6/7-121114 Water 12/11/14 08:46 12/12/14 09:40 720-61844-4 SW-11-121114 Water 12/11/14 08:55 12/12/14 09:40 720-61844-5 SW-12-121114 Water 12/11/14 09:10 12/12/14 09:40 720-61844-6 SHEET-1-121114 12/11/14 07:45 12/12/14 09:40 Water 720-61844-7 SHEET-2-121114 12/11/14 07:40 12/12/14 09:40 Water 720-61844-8 12/11/14 09:00 12/12/14 09:40 SW-11-121114-DUP Water 720-61844-9 TS1-I-121114 Water 12/11/14 09:40 12/12/14 09:40

TestAmerica Pleasanton

TestAmerica Job ID: 720-61844-1

771		

	7120-61844
Chain of Custody Record	INSTRUCTIONS FOR LAB PERSONNEL:

TestAmerica	
1220 Quarry Lane	

Please send analytic results, electronic deliverables and the original chain-of-custody form to:

INSTRUCTIONS FOR LAB PERSONNEL:

GeoTracker EDF required? ☐ Yes

Equis 4-file EDWEDD required? ⊠ Yes □ No

1220 Qua		labresults@weiss.co	m			~	-					מו זומנוו												
	n, CA 94566	mec@weiss.com										other so	cans											
Phone:	925-484-1919 ext.137 Client Contact	sab@weiss.com Project Manager:	Scott Bourn			Protocol I					s or pro										CC	C Numb	er:	\neg
Weiss Asso		Project ID:	426-2026.01		<u></u>	1991	Ť	7	Γ				T	Т			T	T	ŤΓ					
2200 Powe	ll Street, Suite 925		NEC/S	AR			<u>(</u>)	Ę	Ľ.	reductance		l								F		***************************************	····	
Emeryville	, CA 94608	Sample date(s):	17		•		1 254	SQT.	F,	1]					J	-			Page	of		_
(510) 450-6	000 Phone	Analysi	is Turnaro	und Tim	ie:	(McMood 100) 403)	s (SA	64.A	, S.	₽ Ec														
(510) 547-5	043 FAX					100	Solid	× 16	Q. S. M. Y. (S.	ďω		1									Š	DG numb	er:	`
Job Name:	LRT 2014-2015 Annual Storm Water Sampling		Standard	1		tob)	nded	B	I AL	20		İ			Ì		Ì							ļ
Address:	Levin Richmond Terminal, 402 Wright Avenue, Richmond, CA 94804	(S	pecify Days or)	Hours)		Analyte (Mt pH (EPA 9040B)	Total Suspended Solids (SM 2540D)	Osl & Grease (EPA 1664A SGT-HEM)	Total Morals-Al,Cu, Fe, Ni, Pb, Zn (EPA 200,8 ICP-MS)	Specific Co.														
Lab ID	Sample Identification	Sample Date	Sample Time	Sample Matrix	3	pH (E	Total	ु। क	Total (EPA	ķž											Samp	le Specific	. Notes:	
	TS1-E- 12((14	12/11/14	0945	W	5	1/	V	V	J	V		IIIII WIMA												
	SW-3- 121114		0940	W	5	₹,	V	V	1	V														
	SW-4/5/6/7-121(14	1	0846		5	Į √	V	V	V	1														
	SW-11- 121114		0955	W	5	1	V	$ \vee $	V	\checkmark														
	SW-12- 121114 3		0910	V-	812	■ ✓	V	1	\checkmark	✓											MSIM	150	·····	
	SHEET-1- 12/114		0745	W	1 .		1	<u> </u>											$\bot \bot$			_		
	SHEET-2- 12/(14		0740	W	1		√																_	
	SW-11-121114-dip		0900		5	\checkmark	V	J	N	1													_	
		14700																					_	
																72	0-618	344 Cł	nain of	f Cust	ody			
·			- \	Fiel	d Filtered (X):	1									1	1	1	١,	1				
	Preservation Used: 1= Ice, 2= HCl; 3= H ₂ SO ₄ ; 4=	ENO3; 5=NaOH; 6= Ott	her			1	1	1, 2	1,4	1	1	1	1	1	1	1	1	1	1	1				
Special In	structions/OC Requirements & Comments:	Level II Report. R	eport with re	porting li	mit and me	thod dete	ection			ze and	d repo	rt only	the m	etals	liste	abov	e (Al,	Cu, F	e, Ni, 1	Pb, at	ıd Zn).	G	·····	_
		-	•	•					•	س رد	- ·		81								ŕ			
										5	- 1]	4-	DI	•	1)	_								İ
Relinquished		Company Wess	-7	Date/Time:	830AV	Received	by.	2	500	n	1/2	37)	- (Compa	ay.	WX			E	ate/Time.	17	082	7
Relinquished	7 0 1 1 1 7 7 7	Company:	~	Date/Tunte:		Received	>	رازار سرار		, /	7-			-	Compa	py:	<u>.</u>		-	Ī	ate/Time.	1		
Relinquished	1 120	3 WE	2	Date/Time	20140	Paganit d	<u> </u>		-				()		<u>-</u>	100	eril	숔_	,	12/12 late/Time	1140	799	ر ا
Reunquished		Company.		Date/1me		Received							(5	Compa	uy.				1	aic/ I line			
1	**************************************	1		<i></i>																				

ED_000946_Recollect_00330313-00191

Chain of Custody Record

Please send analytic results, electronic deliverables and the original chain-of-custody form to

INSTRUCTIONS FOR LAB PERSONNEL:

GeoTracker EDF required?

Yes

Yes

720-61844

TestAmeri 1220 Quar		original chain-of-cust labresults@weiss.com				-						Yes Imut in											
	, CA 94566	mec@weiss.com										other se		•									
	925-484-1919 ext.137	sab@weiss.com				Call in	omedia	tely with	h any q	uestions	or pro	blems											 ,
	Client Contact	Project Manager:	Scott Bourns	2	Pro	otocol ID/path: J \Levin Richmond\03b_Sampling											COC Number:						
Weiss Assoc	riates	Project ID:	426-2026.01		, (i)			A1641A	F		l				İ	ŀ		l					}
2200 Powell	Street, Suite 925	Sampled by:	MEC	1440		MOL	,Z	12	\$					1			l	l					1
Emeryville,	CA 94608	Sample date(s):	17/11	114		Z Z	12 12 13	2	7						l							Page of	
(510) 450-60	000 Phone	Analysi	s Turnaro	uhd Time	: 12	S) sp	e e		3								į	l				ļ	
(510) 547-50	143 FAX				ă de la companie de l	Soli	\dig(\square\)) Ye	904cr		ĺ					ĺ	1					SDG number:	.]
Job Name:	LRT 2014-2015 Annual Storm Water Sampling		Standard	l	- (N	paper	₹ 5	<u> </u>	9		****							į					l
Address:	Levin Richmond Terminal, 402 Wright Avenue, Richmond, CA 94804	(S _I	ecify Days or l	· · · · · · · · · · · · · · · · · · ·	:: III	Total Suspended Solids (SM 2540D)	Total Metals- Al.Cu, Fe, Nt, Pb, Zn (BPA 200 8 ICP-MS)	Ort +Greare	7								ĺ					<u></u>	
Lab ID	Sample Identification	Sample Date	Sample Time	Sample Matrix	# of Cont	Total	Total (BPA		40													Sample Specific Note	:8:
	TS1-1- 12(114	12/11/14	0940	W	5	√	V	V	1			ļ											
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										<u>†</u>											
······································			<u> </u>				 				-												
			<u> </u>																	<u> </u>			
																	ŀ					i	
												T											
		 	1								-	-	1										
		ļ									-									ļ	ļ	ļ	
											ļ											1	
	VOITHING CONTINUE AND AND AND AND AND AND AND AND AND AND		 				 																
			ļ.,						-											<u> </u>			
			1																				
		,		· Field	l Filtered (X):	1									***************************************	- 1	1					•	
	Preservation Used: 1=Ice, 2=HCl; 3=H ₂ SO ₄ ; 4=H	NO3; 5=NaOH; 6= Otl	ier			1	1,4	1	1	1	1	1	1	1	1	1	3	1	1	1	1		
Special Ins	tructions/OC Requirements & Comments:	Level II Report. R	eport with re	eporting li	mit and metho	d dete	ction	limit.	Analy	ze and	i repo	rt only	y the 1	metal	s liste	d abo	ve (Al	, Cu,	Fe, N	i, Pb,	and 2	in).	
									-									_					l
Relinduished	April .	Company Massage		Date/Time	14 930 P	cerved l	oy é		20	n	#	フブ	7.5		0	Compa	ny (N	Z			Date/Times/12 Af	20
Relinquished	Seen # 37+ 0	Company 11 Y		Date of infe	DAGE RE	oerved l	3y		2			-			0	Compa		14	mo	γι'c	4	Date/Tyme 12/12/14/094	ŧυ
Relinquished	by.	Company		Date/Time	Jeko	ceived l	65									Compa	ny	<u> </u>		1	•	Date/Time	, -
	X = Samples released to a secured, locked as			L				A C.			3 £		4 1- 1-										

Client: Weiss Associates Job Number: 720-61844-1

Login Number: 61844 List Source: TestAmerica Pleasanton

List Number: 1

Creator: Gonzales, Justinn

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Client: Weiss Associates Job Number: 720-61844-1

List Source: TestAmerica Chicago
List Number: 3
List Creation: 12/16/14 01:10 PM

Creator: Kelsey, Shawn M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

Client: Weiss Associates Job Number: 720-61844-1

List Source: TestAmerica Irvine
List Number: 4
List Creation: 12/16/14 12:34 PM

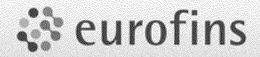
Creator: Salas, Margarita

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Client: Weiss Associates Job Number: 720-61844-1

List Source: TestAmerica Irvine
List Number: 5
List Creation: 12/17/14 09:41 AM

Creator: Freitag, Kevin R


Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Client: Weiss Associates Job Number: 720-61844-1

List Source: TestAmerica Seattle
List Number: 2
List Creation: 12/16/14 10:24 AM

Creator: Luna, Francisco J

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	10.0c/13.9 IR2
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Calscience

WORK ORDER NUMBER: 14-12-0426

The difference is service

ResultLink)

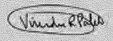
Email your PM)

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Weiss Associates

Client Project Name: LRT 2014-2015 Annual Storm Water


Sampling / 426-2026.01 Task 1.1.3

Attention: Scott Bourne

2200 Powell Street

Suite 925

Emeryville, CA 94608-1879

Approved for release on 12/22/2014 by:

Virendra Patel Project Manager

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way Carrien Grove CA 92841-1432 • TEL (714) 895-5494 • FAX (714) 894-7501 • www.calyclence.com

NELAPID 032700A LACIASS DAD FLAPID ADE 1864 (ISCHED 1702) 2005 L. CSDLAC ID. 10109 L. SCACMELID, 93/ADSOC

8

Contents

16

-	ect Name: r Number:	LRT 2014-2015 Annual Storm Water Sampling / 426-2026.01 Task 1.1.3 14-12-0426	
1	Work Ord	er Narrative	3
2	Sample S	ummary	4
3	Detection	s Summary	5
4	4.1 EPA	mple Data	6 6 8
5		ontrol Sample Data	12 12
6	Sample A	nalysis Summary	14
7	Glossary	of Terms and Qualifiers	15

Chain-of-Custody/Sample Receipt Form.....

Work Order Narrative

Work Order: 14-12-0426 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 12/04/14. They were assigned to Work Order 14-12-0426.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

New York NELAP air certification does not certify for all reported methods and analytes, reference the accredited items here: http://www.calscience.com/PDF/New_York.pdf

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Emeryville, CA 94608-1879

Sample Summary

Client: Weiss Associates 14-12-0426 Work Order:

LRT 2014-2015 Annual Storm Water Sampling / 426-2026.01 Task 1.1.3 2200 Powell Street, Suite 925 Project Name:

PO Number:

Date/Time 12/04/14 10:40

Received:

Number of 6 Containers:

Attn: Scott Bourne

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
SW-3-120214	14-12-0426-1	12/02/14 11:40	2	Aqueous
SW-3-120214-dup	14-12-0426-2	12/02/14 11:45	2	Aqueous
SW-4/5/6/7-120214	14-12-0426-3	12/02/14 11:30	2	Aqueous

Detections Summary

Client: Weiss Associates

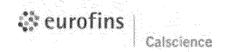
2200 Powell Street, Suite 925

Emeryville, CA 94608-1879

Work Order: 14-12-0426

LRT 2014-2015 Annual Storm Water Sampling / 426-2026.01 Task 1.1.3 Project Name:

Received: 12/04/14


Attn: Scott Bourne Page 1 of 1

<u>Result</u>	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	<u>Extraction</u>
2.8		2.0	ng/L	EPA 8081A	EPA 3510C
14		2.0	ng/L	EPA 8081A	EPA 3510C
19		2.0	ng/L	EPA 8081A	EPA 3510C
2.5		1.9	ng/L	EPA 8081A	EPA 3510C
14		1.9	ng/L	EPA 8081A	EPA 3510C
19		1.9	ng/L	EPA 8081A	EPA 3510C
3.5		1.9	ng/L	EPA 8081A	EPA 3510C
	2.8 14 19 2.5 14	2.8 14 19 2.5 14	2.8 2.0 14 2.0 19 2.0 2.5 1.9 14 1.9 19 1.9	2.8 2.0 ng/L 14 2.0 ng/L 19 2.0 ng/L 2.5 1.9 ng/L 14 1.9 ng/L 19 1.9 ng/L	2.8 2.0 ng/L EPA 8081A 14 2.0 ng/L EPA 8081A 19 2.0 ng/L EPA 8081A 2.5 1.9 ng/L EPA 8081A 14 1.9 ng/L EPA 8081A 19 1.9 ng/L EPA 8081A 19 1.9 ng/L EPA 8081A

Subcontracted analyses, if any, are not included in this summary.

Page 1 of 2

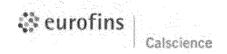
Analytical Report

Weiss AssociatesDate Received:12/04/142200 Powell Street, Suite 925Work Order:14-12-0426Emeryville, CA 94608-1879Preparation:EPA 3510C

Method: EPA 8081A

Units: ug/L

Project: LRT 2014-2015 Annual Storm Water Sampling / 426-


2026.01 Task 1.1.3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SW-3-120214	14-12-0426-1-A	12/02/14 11:40	Aqueous	GC 51	12/08/14	12/09/14 17:11	141208L13
Comment(s): - Results were evaluated t	to the MDL (DL), cond	centrations >=	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>llt</u>	<u>RL</u>	MDL	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Alpha-BHC	ND		0.097	0.027	1.00		
Beta-BHC	ND		0.097	0.029	1.00		
Delta-BHC	ND		0.097	0.028	1.00		
Endosulfan I	ND		0.097	0.027	1.00		
Endrin Aldehyde	ND		0.097	0.026	1.00		
Endosulfan II	ND		0.097	0.026	1.00		
Endosulfan Sulfate	ND		0.097	0.028	1.00		
Methoxychlor	ND		0.097	0.024	1.00		
Chlordane	ND		0.97	0.32	1.00		
<u>Surrogate</u>	Rec.	<u>(%)</u>	Control Limits	Qualifiers			
Decachlorobiphenyl	88		50-135				
2,4,5,6-Tetrachloro-m-Xylene	92		50-135				

SW-3-120214-dup	14-12-0426-2-A 12/02/ 11:45	14 Aqueous	GC 51	12/08/14	12/09/14 17:25	141208L13
Comment(s): - Results were e	evaluated to the MDL (DL), concentration	ns >= to the MDL (DL	.) but < RL (LOC	Q), if found, are	qualified with a	ı "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	MDL	<u>DF</u>		<u>Qualifiers</u>
Alpha-BHC	ND	0.097	0.027	1.00		
Beta-BHC	ND	0.097	0.029	1.00		
Delta-BHC	ND	0.097	0.028	1.00		
Endosulfan I	ND	0.097	0.027	1.00		
Endrin Aldehyde	ND	0.097	0.026	1.00		
Endosulfan II	ND	0.097	0.026	1.00		
Endosulfan Sulfate	ND	0.097	0.028	1.00		
Methoxychlor	ND	0.097	0.024	1.00		
Chlordane	ND	0.97	0.32	1.00		
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers			
Decachlorobiphenyl	90	50-135				
2,4,5,6-Tetrachloro-m-Xylene	94	50-135				

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

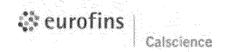
Page 2 of 2

Analytical Report

Weiss AssociatesDate Received:12/04/142200 Powell Street, Suite 925Work Order:14-12-0426Emeryville, CA 94608-1879Preparation:EPA 3510C

Method: EPA 8081A Units: ug/L

Project: LRT 2014-2015 Annual Storm Water Sampling / 426-


2026.01 Task 1.1.3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SW-4/5/6/7-120214	14-12-0426-3-A	12/02/14 11:30	Aqueous	GC 51	12/08/14	12/09/14 17:40	141208L13
Comment(s): - Results were evaluated to	o the MDL (DL), cond	centrations >= t	to the MDL (DL	.) but < RL (LOC	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ilt</u>	<u>RL</u>	MDL	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Alpha-BHC	ND		0.096	0.027	1.00		
Beta-BHC	ND		0.096	0.029	1.00		
Delta-BHC	ND		0.096	0.027	1.00		
Endosulfan I	ND		0.096	0.027	1.00		
Endrin Aldehyde	ND		0.096	0.025	1.00		
Endosulfan II	ND		0.096	0.026	1.00		
Endosulfan Sulfate	ND		0.096	0.028	1.00		
Methoxychlor	ND		0.096	0.024	1.00		
Chlordane	ND		0.96	0.32	1.00		
<u>Surrogate</u>	Rec.	<u>(%)</u>	Control Limits	Qualifiers			
Decachlorobiphenyl	79		50-135				
2,4,5,6-Tetrachloro-m-Xylene	88		50-135				

Method Blank	099-12-529-762	N/A Aq	ueous GC 51	12/08/14	12/09/14 16:01	141208L13
Comment(s): - Resu	Its were evaluated to the MDL (DL), conc	entrations >= to the	MDL (DL) but < RL (LOQ), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt RL</u>	<u>MDL</u>	<u>DF</u>	2	<u>Qualifiers</u>
Alpha-BHC	ND	0.10	0.028	1.00		
Beta-BHC	ND	0.10	0.030	1.00		
Delta-BHC	ND	0.10	0.029	1.00		
Endosulfan I	ND	0.10	0.028	1.00		
Endrin Aldehyde	ND	0.10	0.026	1.00		
Endosulfan II	ND	0.10	0.027	1.00		
Endosulfan Sulfate	ND	0.10	0.029	1.00		
Methoxychlor	ND	0.10	0.025	1.00		
Chlordane	ND	1.0	0.33	1.00		
Surrogate	Rec.	(%) Contro	ol Limits Qualifi	<u>ers</u>		
Decachlorobiphenyl	95	50-13	5			
2,4,5,6-Tetrachloro-m-X	ylene 94	50-13	5			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Analytical Report

Weiss Associates 2200 Powell Street, Suite 925 Emeryville, CA 94608-1879 Date Received: Work Order: Preparation: Method:

14-12-0426 EPA 3510C EPA 8081A

12/04/14

Units:

ng/L Page 1 of 4

Project: LRT 2014-2015 Annual Storm Water Sampling / 426-

2026.01 Task 1.1.3

Client Sample Number

Lab Sample Number

Date/Time Collected

Matrix Instrument
Prepared

Analyzed

QC Batch ID

SW-3-120214

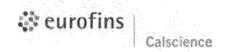
14-12-0426-1-B

12/02/14
11:40

Aqueous GC 44

12/09/14
12/18/14
141209L05

SW-3-120214	14-12-0426-1-B 12/02/1 11:40	4 Aqueous	GC 44	12/09/14	12/18/14 06:50	141209L05
Comment(s): - Results were evalu	uated to the MDL (DL), concentration	s >= to the MDL (DL)	but < RL (LOC), if found, are	qualified with a	ı "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
Aldrin	ND	2.0	0.33	1.00		
4,4'-DDD	2.8	2.0	0.55	1.00		
4,4'-DDE	14	2.0	0.48	1.00		
4,4'-DDT	19	2.0	0.55	1.00		
Alpha Chlordane	ND	2.0	0.49	1.00		
Dieldrin	ND	2.0	0.55	1.00		
Gamma Chlordane	ND	2.0	0.49	1.00		
Toxaphene	ND	25	8.2	1.00		
Endrin	ND	2.0	0.31	1.00		
Gamma-BHC	ND	2.0	0.46	1.00		
Heptachlor	ND	2.0	0.36	1.00		
Heptachlor Epoxide	ND	2.0	0.34	1.00		
Surrogate	Rec. (%)	Control Limits	Qualifiers			
Decachlorobiphenyl	85	50-150				
2,4,5,6-Tetrachloro-m-Xylene	78	50-150				


RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

Page 2 of 4

Analytical Report

Weiss AssociatesDate Received:12/04/142200 Powell Street, Suite 925Work Order:14-12-0426Emeryville, CA 94608-1879Preparation:EPA 3510C

Method: EPA 8081A

Units: ng/L

Project: LRT 2014-2015 Annual Storm Water Sampling / 426-

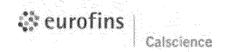
2026.01 Task 1.1.3

2,4,5,6-Tetrachloro-m-Xylene

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SW-3-120214-dup	14-12-0426-2-B	12/02/14 11:45	Aqueous	GC 44	12/09/14	12/18/14 07:04	141209L05
Comment(s): - Results were evalua	ted to the MDL (DL), cond	centrations >= to	the MDL (DL	.) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ilt</u> <u>F</u>	<u> </u>	MDL	<u>DF</u>	2	<u>Qualifiers</u>
Aldrin	ND	1	.9	0.31	1.00		
4,4'-DDD	2.5	1	.9	0.53	1.00		
4,4'-DDE	14	1	.9	0.46	1.00		
4,4'-DDT	19	1	.9	0.53	1.00		
Alpha Chlordane	ND	1	.9	0.47	1.00		
Dieldrin	ND	1	.9	0.53	1.00		
Gamma Chlordane	ND	1	.9	0.47	1.00		
Toxaphene	ND	2	24	7.9	1.00		
Endrin	ND	1	.9	0.30	1.00		
Gamma-BHC	ND	1	.9	0.44	1.00		
Heptachlor	ND	1	.9	0.35	1.00		
Heptachlor Epoxide	ND	1	.9	0.33	1.00		
Surrogate	Rec.	<u>(%)</u> <u>C</u>	Control Limits	Qualifiers			
Decachlorobiphenyl	99	5	0-150				

50-150

95


RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

12/04/14

14-12-0426

Page 3 of 4

Analytical Report

Date Received: Weiss Associates 2200 Powell Street, Suite 925 Work Order: Emeryville, CA 94608-1879 Preparation: **EPA 3510C**

> Method: **EPA 8081A** Units: ng/L

Project: LRT 2014-2015 Annual Storm Water Sampling / 426-

2026.01 Task 1.1.3

Surrogate

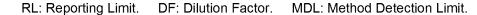
Decachlorobiphenyl

2,4,5,6-Tetrachloro-m-Xylene

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SW-4/5/6/7-120214	14-12-0426-3-B	12/02/14 11:30	Aqueous	GC 44	12/09/14	12/18/14 07:18	141209L05
Comment(s): - Results were evaluated to	o the MDL (DL), cond	entrations >= to	the MDL (DL	.) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>it</u> <u>f</u>	<u> </u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Aldrin	ND	•	1.9	0.32	1.00		
4,4'-DDD	ND	•	1.9	0.53	1.00		
4,4'-DDE	ND	•	1.9	0.46	1.00		
4,4'-DDT	3.5	•	1.9	0.54	1.00		
Alpha Chlordane	ND	•	1.9	0.48	1.00		
Dieldrin	ND	•	1.9	0.53	1.00		
Gamma Chlordane	ND	•	1.9	0.47	1.00		
Toxaphene	ND	2	24	8.0	1.00		
Endrin	ND		1.9	0.30	1.00		
Gamma-BHC	ND	,	1.9	0.45	1.00		
Heptachlor	ND	•	1.9	0.35	1.00		
Heptachlor Epoxide	ND	,	1.9	0.33	1.00		

Control Limits

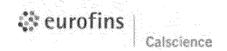
50-150


50-150

Qualifiers

Rec. (%)

100


98

Page 4 of 4

Analytical Report

Weiss Associates 2200 Powell Street, Suite 925 Emeryville, CA 94608-1879

Date Received: 12/04/14 Work Order: 14-12-0426 EPA 3510C Preparation: Method: **EPA 8081A**

Units: ng/L

Project: LRT 2014-2015 Annual Storm Water Sampling / 426-

2026.01 Task 1.1.3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-16-036-14	N/A	Aqueous	GC 44	12/09/14	12/17/14 22:31	141209L05
Comment(s): - Results were ev	aluated to the MDL (DL), con	centrations >= t	o the MDL (DL	.) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Res	ult .	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u> </u>	<u>Qualifiers</u>
Aldrin	ND	:	2.0	0.33	1.00		
4,4'-DDD	ND	:	2.0	0.55	1.00		
4,4'-DDE	ND	:	2.0	0.48	1.00		
4,4'-DDT	ND	:	2.0	0.55	1.00		
Alpha Chlordane	ND	;	2.0	0.49	1.00		
Dieldrin	ND	:	2.0	0.55	1.00		
Gamma Chlordane	ND	;	2.0	0.49	1.00		
Toxaphene	ND	:	25	8.2	1.00		
Endrin	ND	;	2.0	0.31	1.00		
Gamma-BHC	ND	:	2.0	0.46	1.00		
Heptachlor	ND	;	2.0	0.36	1.00		
Heptachlor Epoxide	ND	:	2.0	0.34	1.00		
<u>Surrogate</u>	Rec	<u>. (%)</u>	Control Limits	Qualifiers	i		
Decachlorobiphenyl	88	;	50-150				
2,4,5,6-Tetrachloro-m-Xylene	89	;	50-150				

Quality Control - LCS/LCSD

Weiss Associates 2200 Powell Street, Suite 925 Emeryville, CA 94608-1879 Date Received: Work Order: Preparation: Method: 12/04/14 14-12-0426 EPA 3510C

EPA 8081A Page 1 of 2

Project: LRT 2014-2015 Annual Storm Water Sampling / 426-

0.5000

0.4331

2026.01 Task 1.1.3

Quality Control Sample ID	Туре		Matrix	Instrument D		Date Prepare	ed Date A	nalyzed	LCS/LCSD Ba	tch Number
099-12-529-762	LCS		Aqueous	. GC	GC 51 1		12/09/	14 16:16	141208L13	
099-12-529-762	LCSD		Aqueous	GC	51	12/08/14	12/09/	14 16:42	141208L13	
Parameter	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS <u>%Rec.</u>	LCSD Conc.	<u>LCSD</u> %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
Alpha-BHC	0.5000	0.4071	81	0.3930	79	50-135	36-149	4	0-25	
Gamma-BHC	0.5000	0.4210	84	0.4183	84	50-135	36-149	1	0-25	
Beta-BHC	0.5000	0.3133	63	0.3111	62	50-135	36-149	1	0-25	
Heptachlor	0.5000	0.4299	86	0.4335	87	50-135	36-149	1	0-25	
Delta-BHC	0.5000	0.3584	72	0.3589	72	50-135	36-149	0	0-25	
Aldrin	0.5000	0.4051	81	0.4080	82	50-135	36-149	1	0-25	
Heptachlor Epoxide	0.5000	0.3995	80	0.4019	80	50-135	36-149	1	0-25	
Endosulfan I	0.5000	0.4163	83	0.4111	82	50-135	36-149	1	0-25	
Dieldrin	0.5000	0.4232	85	0.4168	83	50-135	36-149	2	0-25	
4,4'-DDE	0.5000	0.4104	82	0.4114	82	50-135	36-149	0	0-25	
Endrin	0.5000	0.4447	89	0.4512	90	50-135	36-149	1	0-25	
Endrin Aldehyde	0.5000	0.4173	83	0.4210	84	50-135	36-149	1	0-25	
4,4'-DDD	0.5000	0.4124	82	0.4144	83	50-135	36-149	0	0-25	
Endosulfan II	0.5000	0.4110	82	0.4115	82	50-135	36-149	0	0-25	
4,4'-DDT	0.5000	0.4232	85	0.4320	86	50-135	36-149	2	0-25	
Endosulfan Sulfate	0.5000	0.4081	82	0.4170	83	50-135	36-149	2	0-25	

0.4406

50-135

36-149

Total number of LCS compounds: 17
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Methoxychlor

0-25

Quality Control - LCS/LCSD

Weiss Associates 2200 Powell Street, Suite 925 Emeryville, CA 94608-1879

Date Received: Work Order: Preparation: Method:

12/04/14 14-12-0426 EPA 3510C

EPA 8081A

Page 2 of 2

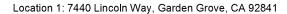
Project: LRT 2014-2015 Annual Storm Water Sampling / 426-

2026.01 Task 1.1.3

Quality Control Sample ID	Туре		Matrix	ix Instrument		Date Prepare	d Date A	nalyzed	ed LCS/LCSD Batch N		
099-16-036-14	LCS		Aqueous	G	C 44	12/09/14	12/17/	4 22:03	141209L05		
099-16-036-14	LCSD		Aqueous	G	C 44	12/09/14	12/17/	14 22:17	141209L05		
<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers	
Aldrin	50.00	46.36	93	50.88	102	50-150	33-167	9	0-25		
4,4'-DDD	50.00	45.69	91	51.91	104	50-150	33-167	13	0-25		
4,4'-DDE	50.00	45.52	91	51.41	103	50-150	33-167	12	0-25		
4,4'-DDT	50.00	45.18	90	51.34	103	50-150	33-167	13	0-25		
Alpha Chlordane	50.00	44.22	88	50.07	100	50-150	33-167	12	0-25		
Dieldrin	50.00	46.77	94	52.80	106	50-150	33-167	12	0-25		
Gamma Chlordane	50.00	45.25	90	51.17	102	50-150	33-167	12	0-25		
Endrin	50.00	45.50	91	52.09	104	50-150	33-167	14	0-25		
Gamma-BHC	50.00	47.51	95	52.28	105	50-150	33-167	10	0-25		
Heptachlor	50.00	50.34	101	54.16	108	50-150	33-167	7	0-25		
Heptachlor Epoxide	50.00	44.63	89	50.22	100	50-150	33-167	12	0-25		

Total number of LCS compounds: 11 Total number of ME compounds: 0

Total number of ME compounds allowed: 1


LCS ME CL validation result: Pass

Sample Analysis Summary Report

Work Order: 14-12-0426				Page 1 of 1
Method	<u>Extraction</u>	<u>Chemist ID</u>	<u>Instrument</u>	Analytical Location
EPA 8081A	EPA 3510C	421	GC 44	1
EPA 8081A	EPA 3510C	669	GC 51	1

Glossary of Terms and Qualifiers

Work Order: 14-12-0426 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
Ε	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike

V 9/- Pagayary and/or PPD out of range

The sample extract was subjected to Silica Gel treatment prior to analysis.

X % Recovery and/or RPD out-of-range.

SG

concentration by a factor of four or greater.

Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

	巴
	U
I	_
	ഉ
	×
	ഒ
	ĭ
	Ó
I	_
	ᄁ
	8
	X
	≐
	ന
	~
	ជ
I	~
I	Š Š
I) (한 (한
I	Š Š
I) (한 (한
ı	ct 0033
	ct 0033031;
	ct 00330
•	ct 0033031;
	ct 0033031;
1	ct 0033031;
	ct 0033031;

Chain of Custody Record

CalSciene Environmental Lab original chain-of-custody form to: 5063 Commercial Circle, Suite H labresults@weiss.com Concord, CA 94520 mec@weiss.com					Equis Specif Notify	Tracker EDF required?									6					
Client Contact	Project Manager:	Scott Bourn	e	Pr	otocol ID/path: J:\Levin Richmond\03b_Sampling											COC Number	r:			
Weiss Associates	Project ID:	426-2026.01	Task 1.1.3							T										
2200 Powell Street, Suite 925	Sampled by:	Cunn	hahan	<u>, </u>			1										.			
Emeryville, CA 94608	Sample date(s):	12/21	IV	`	3														Page of _	-
(510) 450-6000 Phone	Analysis	Turnaro	und Time	: Ê	ไล															
(510) 547-5043 FAX	pod				8081A)													F	SDG number	r:
Job Name: LRT 2014-2015 Annual Storm Water Sampling	Analysis Turnaround Time:				(EPA 8															
Address: Levin Richmond Terminal, 402 Wright Avenue, Richmond, CA 94804	(Sp	ecify Days or I	Hours)	Zajvije.	1 5															
Lab ID Sample Identification	Sample Date	Sample Time	Sample Matrix	# of Cont.	Pesticides														Sample Specific l	Notes:
SW-3-120214	12/2/14	1140	W	2	V															
2 SW-3-120214-dep	']'	1145		2_	/															
3 SW-4/5/6/7-120214		1130	\rightarrow	2	V															
	*																			
														_	1	 				
							,			_						 	·			
																ļ				
		·																		
			~~~												-					
					-						<del> </del>				-	1				···
																ļ				
			Field	Filtered (X):																•
Preservation Used: 1= Ice, 2= HCl; 3= H ₂ SO ₄ ; 4=H	NO ₃ ; 5=NaOH; 6= Otl	er			1											<b>†</b>				
Special Instructions/QC Requirements & Comments:			reporting	limit and me	hod d	etectio	n limi	. Plea	se use a	greed	upon a	nalytic	al meth	ods for	lowes	t detec	tion li	mits.	<del></del>	
	•	-										٠								
Relinquished by: MCanning La	Company: Weiss		Date/Time:	4 /235 R	ceived	by:	770	lle	r E	-C/			O Co	mpany;	7			·  Î	Date/Time: /2/3/14 /e	235
Relinquistied by:	Company:		Date/Time:	4 /730 R	ceived	by:	, ,				1		Co O	mpany:					Date/Time:	
Relinquished by:	Company:		Date/Time:	R	ceived	by:			11	1/1)	4			mpany	. 10			i	Date/Time:	21.6
IZI = Samples released to a secured, locked a	Tea.				·······		2 = <b>0</b>	mnles	cocived (		oured to			mpany.	· C /	-			12/14/14 16	JHO

INSTRUCTIONS FOR LAB PERSONNEL:





Ship From: ALAN KEMP CAL SCIENCE- CONCORD 5063 COMMERCIAL CIRCLE #H CONCORD, CA 94520

Ship To: SAMPLE RECEIVING CEL 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00

Reference: WEISS, PAC ECORISK,

Delivery Instructions:

Signature Type: SIGNATURE REQUIRED

526296005 Tracking #: 

DRC

GARDEN GROVE

D92845A



Print Date: 12/03/14 16:16 PM

NPS

Package 1 of 1

Send Label To Printer

☑ Print All

Edit Shipment

Finish

### LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

STEP 1 - Use the "Send Label to Printer" button on this page to print the shipping label on a laser or inkjet printer.

STEP 2 - Fold this page in half.

STEP 3 - Securely attach this label to your package, do not cover the barcode.

STEP 4 - Request an on-call pickup for your package, if you do not have scheduled daily pickup service or Drop-off your package at the nearest GSO drop box. Locate nearest GSO dropbox locations using this link.

### ADDITIONAL OPTIONS:

Send Label Via Email

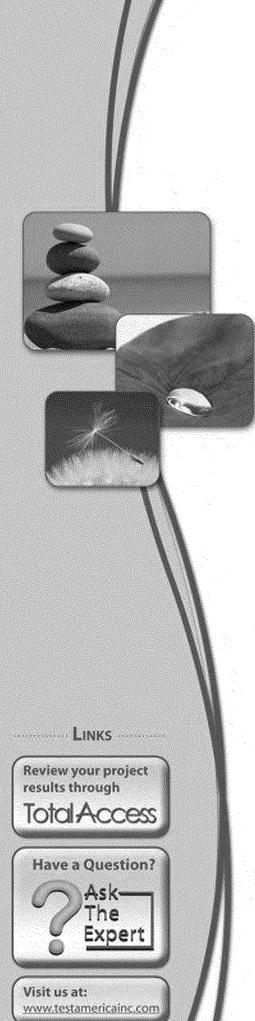
Create Return Label

### TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all the service terms and conditions described in this section. Our liability for loss or damage to any package is limited to your actual damages or \$100 whichever is less, unless you pay for and declare a higher authorized value. If you declare a higher value and pay the additional charge, our liability will be the lesser of your declared value or the actual value of your loss or damage. In any event, we will not be liable for any damage, whether direct, incidental, special or consequential, in excess of the declared value of a shipment whether or not we had knowledge that such damage might be incurred including but not limited to loss of income or profit. We will not be liable for your acts or omissions, including but not limited to improper or insufficient packaging, securing, marking or addressing. Also, we will not be liable if you or the recipient violates any of the terms of our agreement. We will not be liable for loss, damage or delay caused by events we cannot control, including but not limited to acts of God, perils of the air, weather conditions, act of public enemies, war, strikes, or civil commotion. The highest declared value for our GSO Priority Letter or GSO Priority Package is \$500. For other shipments the highest declared value is \$10,000 unless your package contains items of "extraordinary value", in which case the highest declared value we allow is \$500. Items of "extraordinary value" include, but or not limited to, artwork, jewelry, furs, precious metals, tickets, negotiable instruments and other items with intrinsic value.






Calscience

WORK ORDER #: 14-12- 4 4 4

# SAMPLE RECEIPT FORM

Cooler	of	
--------	----	--

CLIENT: DATE:	12/04/	<u> 14</u>		
TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0 °C – 6.0 °C, not frozen except second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of the second representation of	☐ Sample			
☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampli	ng.			
☐ Received at ambient temperature, placed on ice for transport by Courier.  Ambient Temperature: ☐ Air ☐ Filter	Checked by	/: <u>15</u>		
CUSTODY SEALS INTACT:				
© Cooler □ □ No (Not Intact) □ Not Present □ N/A	Checked by	<u>": 15</u>		
□ Sample □ □ No (Not Intact) ☑ Not Present	Checked by: 592			
SAMPLE CONDITION: Yes	No	N/A		
OAMILE OOKSITION				
Chain-Of-Custody (COC) document(s) received with samples				
COC document(s) received complete  □ Collection date/time, matrix, and/or # of containers logged in based on sample labels.	<u></u>			
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.				
Sampler's name indicated on COC				
Sample container label(s) consistent with COC				
Sample container(s) intact and good condition				
Proper containers and sufficient volume for analyses requested				
Analyses received within holding time				
Aqueous samples received within 15-minute holding time				
□ pH □ Residual Chlorine □ Dissolved Sulfides □ Dissolved Oxygen □		D'		
Proper preservation noted on COC or sample container				
☐ Unpreserved vials received for Volatiles analysis				
Volatile analysis container(s) free of headspace □				
Tedlar bag(s) free of condensation   CONTAINER TYPE:				
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores® □Terra	Cores [®] □_			
Aqueous: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp,□1AGB [	∃1AGB <b>na</b> ₂ [	]1AGB <b>s</b>		
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB	□1PB <b>na</b> □	500PB		
□250PB □250PBn □125PB □125PB <b>znna</b> □100PJ □100PJ <b>na₂</b> □ □_				
Air: Tedlar® Canister Other: Trip Blank Lot#: Labeled Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope Freservative: h: HCL n: HNO3 na2:Na2S2O3 na: NaOH p: H3PO4 s: H2SO4 u: Ultra-pure znna: ZnAc2+NaOH f: Filtered	/Checked by: Reviewed by: Scanned by	705		



# <u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

# **ANALYTICAL REPORT**

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-62889-1

Client Project/Site: LRT 2014-2015 Annual Stormwater

Sampling

For:

Weiss Associates 2200 Powell Street Suite 925 Emeryville, California 94608

Attn: Mr. Scott Bourne

Mind R 5 Som

Authorized for release by: 2/24/2015 3:33:47 PM

Micah Smith, Project Manager II (925)484-1919

micah.smith@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

# **Table of Contents**

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	9
QC Association Summary	12
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Chacklists	19

4

Ę

0

9

10

ИG

13

114

# **Definitions/Glossary**

Client: Weiss Associates TestAmerica Job ID: 720-62889-1

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

Toxicity Equivalent Quotient (Dioxin)

#### Qualifiers

#### Metals

Qualifier Qualifier Description

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

#### **General Chemistry**

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Н	Sample was prepped or analyzed beyond the specified holding time

## Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

#### **Case Narrative**

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

TestAmerica Job ID: 720-62889-1

#### Job ID: 720-62889-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-62889-1

#### Comments

No additional comments.

#### Receipt

The samples were received on 2/9/2015 6:00 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.7° C.

Except:

All samples were received outside of holding time for pH.

#### Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

#### **General Chemistry**

Method(s) 1664A: The method blank (MB), laboratory control standard (LCS), and matrix spike and matrix spike duplicate (MS/MSD) analyzed in batch 275542 were in control, but were analyzed as HEM, rather than SGT-HEM, since the sample was a non-detect for HEM and did not require the silica gel treatment.

No other analytical or quality issues were noted, other than those listed above or described in the Definitions/Glossary page.

# **Detection Summary**

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

TestAmerica Job ID: 720-62889-1

Lab Sample ID: 720-62
-----------------------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	0.23		0.10	0.10	mg/L	1	_	200.8	Total/NA
Copper	0.0023		0.0020	0.00060	mg/L	1		200.8	Total/NA
Iron	0.18		0.040	0.0058	mg/L	1		200.8	Total/NA
Nickel	0.0016	J	0.0030	0.00040	mg/L	1		200.8	Total/NA
Lead	0.0014		0.00040	0.000034	mg/L	1		200.8	Total/NA
Zinc	0.092		0.0070	0.0019	mg/L	1		200.8	Total/NA
HEM (Oil & Grease)	1.4	JB	5.2	0.56	mg/L	1		1664A	Total/NA
Total Suspended Solids	8.4		1.3	0.63	mg/L	1		SM 2540D	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
рН	7.70	Н	0.100	0.100	SU	1	_	9040B	Total/NA
Specific Conductance	1500		1.0	1.0	umhos/cm	1		SM 2510B	Total/NA

## Client Sample ID: SW-11-020615

## Lab Sample ID: 720-62889-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Copper	0.0029		0.0020	0.00060	mg/L	1	_	200.8	Total/NA
Iron	0.23		0.040	0.0058	mg/L	1		200.8	Total/NA
Nickel	0.0047		0.0030	0.00040	mg/L	1		200.8	Total/NA
Lead	0.00027	J	0.00040	0.000034	mg/L	1		200.8	Total/NA
Zinc	0.21		0.0070	0.0019	mg/L	1		200.8	Total/NA
HEM (Oil & Grease)	0.85	JB	5.3	0.57	mg/L	1		1664A	Total/NA
Total Suspended Solids	10		1.1	0.53	mg/L	1		SM 2540D	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
pH	7.54	H	0.100	0.100	SU	1	_	9040B	Total/NA
Specific Conductance	52000		10	10	umhos/cm	10		SM 2510B	Total/NA

## Client Sample ID: SW-12-020615

#### Lab Sample ID: 720-62889-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	1.9		0.10	0.10	mg/L	1	_	200.8	Total/NA
Copper	0.025		0.0020	0.00060	mg/L	1		200.8	Total/NA
Iron	3.6		0.040	0.0058	mg/L	1		200.8	Total/NA
Nickel	0.025		0.0030	0.00040	mg/L	1		200.8	Total/NA
Lead	0.015		0.00040	0.000034	mg/L	1		200.8	Total/NA
Zinc	0.24		0.0070	0.0019	mg/L	1		200.8	Total/NA
HEM (Oil & Grease)	2.7	JB	5.2	0.56	mg/L	1		1664A	Total/NA
Total Suspended Solids	55		4.5	2.3	mg/L	1		SM 2540D	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
pH	7.22	Н	0.100	0.100	SU	1	_	9040B	Total/NA
Specific Conductance	1100		1.0	1.0	umhos/cm	1		SM 2510B	Total/NA

This Detection Summary does not include radiochemical test results.

# **Client Sample Results**

Client: Weiss Associates TestAmerica Job ID: 720-62889-1

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

Client Sample ID: TS1-E-020615

рН

Specific Conductance

Lab Sample ID: 720-62889-1 Date Collected: 02/06/15 13:50

0.100 SU

1.0 umhos/cm

Matrix: Water

02/09/15 22:42

02/17/15 15:38

Method: 200.8 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.23		0.10	0.10	mg/L		02/13/15 10:16	02/13/15 14:48	1
Copper	0.0023		0.0020	0.00060	mg/L		02/13/15 10:16	02/13/15 14:48	1
Iron	0.18		0.040	0.0058	mg/L		02/13/15 10:16	02/13/15 14:48	1
Nickel	0.0016	J	0.0030	0.00040	mg/L		02/13/15 10:16	02/13/15 14:48	1
Lead	0.0014		0.00040	0.000034	mg/L		02/13/15 10:16	02/13/15 14:48	1
Zinc	0.092		0.0070	0.0019	mg/L		02/13/15 10:16	02/13/15 14:48	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM (Oil & Grease)	1.4	JB	5.2	0.56	mg/L		02/11/15 20:49	02/11/15 22:01	1
Total Suspended Solids	8.4		1.3	0.63	mg/L			02/12/15 16:03	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac

0.100

1.0

7.70 H

1500

# **Client Sample Results**

Client: Weiss Associates TestAmerica Job ID: 720-62889-1

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

Client Sample ID: SW-11-020615 Lab Sample ID: 720-62889-2

Date Collected: 02/06/15 14:13 Matrix: Water

Date Received: 02/09/15 18:00

Method: 200.8 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.10	0.10	mg/L		02/13/15 10:16	02/13/15 15:22	1
Copper	0.0029		0.0020	0.00060	mg/L		02/13/15 10:16	02/13/15 15:22	1
Iron	0.23		0.040	0.0058	mg/L		02/13/15 10:16	02/13/15 15:22	1
Nickel	0.0047		0.0030	0.00040	mg/L		02/13/15 10:16	02/13/15 15:22	1
Lead	0.00027	J	0.00040	0.000034	mg/L		02/13/15 10:16	02/13/15 15:22	1
Zinc	0.21		0.0070	0.0019	mg/L		02/13/15 10:16	02/13/15 15:22	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM (Oil & Grease)	0.85	JB	5.3	0.57	mg/L		02/11/15 21:01	02/11/15 22:09	1
Total Suspended Solids	10		1.1	0.53	mg/L			02/12/15 16:03	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.54	H	0.100	0.100	SU			02/09/15 22:47	1
Specific Conductance	52000		10	10	umhos/cm			02/17/15 15:38	10

# **Client Sample Results**

Client: Weiss Associates TestAmerica Job ID: 720-62889-1

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

Client Sample ID: SW-12-020615 Lab Sample ID: 720-62889-3

Date Collected: 02/06/15 14:05 Matrix: Water

Date Received: 02/09/15 18:00

Method: 200.8 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1.9		0.10	0.10	mg/L		02/13/15 10:16	02/13/15 15:26	1
Copper	0.025		0.0020	0.00060	mg/L		02/13/15 10:16	02/13/15 15:26	1
Iron	3.6		0.040	0.0058	mg/L		02/13/15 10:16	02/13/15 15:26	1
Nickel	0.025		0.0030	0.00040	mg/L		02/13/15 10:16	02/13/15 15:26	1
Lead	0.015		0.00040	0.000034	mg/L		02/13/15 10:16	02/13/15 15:26	1
Zinc	0.24		0.0070	0.0019	mg/L		02/13/15 10:16	02/13/15 15:26	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM (Oil & Grease)	2.7	JB	5.2	0.56	mg/L		02/11/15 21:05	02/11/15 22:12	1
Total Suspended Solids	55		4.5	2.3	mg/L			02/12/15 16:03	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.22	Н	0.100	0.100	SU			02/09/15 22:50	1
Specific Conductance	1100		1.0	1.0	umhos/cm			02/17/15 15:38	1

### QC Sample Results

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

#### Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 580-182457/14-A

Matrix: Water

Analysis Batch: 182582

Client Sample ID: Method Blank

TestAmerica Job ID: 720-62889-1

Prep Type: Total/NA

Prep Batch: 182457

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.10	0.10	mg/L		02/13/15 10:16	02/13/15 14:40	1
Copper	ND		0.0020	0.00060	mg/L		02/13/15 10:16	02/13/15 14:40	1
Iron	ND		0.040	0.0058	mg/L		02/13/15 10:16	02/13/15 14:40	1
Nickel	ND		0.0030	0.00040	mg/L		02/13/15 10:16	02/13/15 14:40	1
Lead	ND		0.00040	0.000034	mg/L		02/13/15 10:16	02/13/15 14:40	1
Zinc	ND		0.0070	0.0019	mg/L		02/13/15 10:16	02/13/15 14:40	1

Lab Sample ID: LCS 580-182457/15-A

Matrix: Water

Analysis Batch: 182582

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 182457

Spike	LCS	LCS				%Rec.
Added	Result	Qualifier	Unit	D	%Rec	Limits
1.00	0.988		mg/L		99	85 - 115
0.100	0.0981		mg/L		98	85 ₋ 115
10.0	9.88		mg/L		99	85 _ 115
0.100	0.0976		mg/L		98	85 _ 115
0.100	0.101		mg/L		101	85 ₋ 115
0.100	0.0977		mg/L		98	85 ₋ 115
	Added 1.00 0.100 10.0 0.100 0.100	Added Result 1.00 0.988 0.100 0.0981 10.0 9.88 0.100 0.0976 0.100 0.101	Added Result Qualifier  1.00 0.988  0.100 0.0981  10.0 9.88  0.100 0.0976  0.100 0.101	Added         Result         Qualifier         Unit           1.00         0.988         mg/L           0.100         0.0981         mg/L           10.0         9.88         mg/L           0.100         0.0976         mg/L           0.100         0.101         mg/L	Added         Result         Qualifier         Unit         D           1.00         0.988         mg/L           0.100         0.0981         mg/L           10.0         9.88         mg/L           0.100         0.0976         mg/L           0.100         0.101         mg/L	Added         Result         Qualifier         Unit         D         %Rec           1.00         0.988         mg/L         99           0.100         0.0981         mg/L         98           10.0         9.88         mg/L         99           0.100         0.0976         mg/L         98           0.100         0.101         mg/L         101

Lab Sample ID: LCSD 580-182457/16-A

Matrix: Water

Analysis Batch: 182582

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 182457

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	1.00	0.958		mg/L		96	85 _ 115	3	20
Copper	0.100	0.0945		mg/L		94	85 _ 115	4	20
Iron	10.0	9.58		mg/L		96	85 - 115	3	20
Nickel	0.100	0.0943		mg/L		94	85 ₋ 115	3	20
Lead	0.100	0.0986		mg/L		99	85 _ 115	3	20
Zinc	0.100	0.0936		mg/L		94	85 _ 115	4	20

Lab Sample ID: 720-62889-1 MS

Matrix: Water

Analysis Batch: 182582

Client Sample ID: TS1-E-020615

Prep Type: Total/NA

Prep Batch: 182457

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	0.23		1.00	1.21		mg/L		98	70 _ 130	
Copper	0.0023		0.100	0.0994		mg/L		97	70 _ 130	
Iron	0.18		10.0	9.80		mg/L		96	70 _ 130	
Nickel	0.0016	Ĵ	0.100	0.0985		mg/L		97	70 _ 130	
Lead	0.0014		0.100	0.0955		mg/L		94	70 - 130	
Zinc	0.092		0.100	0.184		mg/L		92	70 ₋ 130	

Lab Sample ID: 720-62889-1 MSD

Matrix: Water

Analysis Batch: 182582

Client Sample ID: TS1-E-020615

Prep Type: Total/NA

Prep Batch: 182457 RPD Limit

Sample Sample Spike MSD MSD %Rec. Analyte Result Qualifier Added Result Qualifier Limits RPD Unit %Rec Aluminum 0.23 1.00 1.18 mg/L 95 70 - 130

### QC Sample Results

Client: Weiss Associates TestAmerica Job ID: 720-62889-1

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

Lab Sample ID: 720-62889-1 MSD	Client Sample ID: 151-E-020615
Matrix: Water	Prep Type: Total/NA

Analysis Batch: 182582

Prep Batch: 182457

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Copper	0.0023		0.100	0.0999		mg/L		98	70 _ 130	0	20
Iron	0.18		10.0	9.76		mg/L		96	70 - 130	0	20
Nickel	0.0016	J	0.100	0.0995		mg/L		98	70 _ 130	1	20
Lead	0.0014		0.100	0.0973		mg/L		96	70 _ 130	2	20
Zinc	0.092		0.100	0.187		mg/L		95	70 - 130	2	20

Lab Sample ID: 720-62889-1 DU Client Sample ID: TS1-E-020615

Matrix: Water

Analysis Batch: 182582

Prep Type: Total/NA Prep Batch: 182457

ruidigata matatir tamaam							i i op moreoixi i	
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Aluminum	0.23		0.218		mg/L			20
Copper	0.0023		0.00242		mg/L		4	20
Iron	0.18		0.180		mg/L		2	20
Nickel	0.0016	J	0.00165	J	mg/L		0.7	20
Lead	0.0014		0.00142		mg/L		3	20
Zinc	0.092		0.0934		mg/L		1	20

### Method: 1664A - HEM and SGT-HEM

Lab Sample ID: MB 500-275537/1-A Client Sample ID: Method Blank

Matrix: Water

HEM (Oil & Grease)

Analysis Batch: 275542

Prep Type: Total/NA Prep Batch: 275537

MB MB Result Qualifier RL MDL Unit Dil Fac Analyte Prepared Analyzed 0.900 J HEM (Oil & Grease) 5.0 02/11/15 19:30 02/11/15 21:12 0.54 mg/L

Lab Sample ID: LCS 500-275537/2-A Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA

Analysis Batch: 275542 Prep Batch: 275537 Spike LCS LCS %Rec. %Rec Analyte Added Result Qualifier Unit Limits

40.0 HEM (Oil & Grease) 34.8 78 _ 114 ma/L

Lab Sample ID: 720-62889-1 MS Client Sample ID: TS1-E-020615 Matrix: Water Prep Type: Total/NA

Analysis Batch: 275542 Prep Batch: 275537 Spike MS MS Sample Sample %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits

Lab Sample ID: 720-62889-1 MSD Client Sample ID: TS1-E-020615

37.0

mg/L

Matrix: Water Prep Type: Total/NA

41.4

1.4 JB

Analysis Batch: 275542 Prep Batch: 275537 Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier Added Result Qualifier Limit Analyte Unit %Rec Limits RPD 41.5 HEM (Oil & Grease) 1.4 JB 35.2 mg/L 81 78 - 114 5

TestAmerica Pleasanton

78 - 114

## QC Sample Results

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

TestAmerica Job ID: 720-62889-1

Method: 9040B - pH

Lab Sample ID: LCS 720-175496/1 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 175496

LCS LCS Spike %Rec. Limits Added Result Qualifier Unit Analyte D %Rec рН 7.00 6.960 SU 99 99 - 101

Method: SM 2510B - Conductivity, Specific Conductance

Lab Sample ID: MB 440-236854/3 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 236854

MB MB

RL **RL** Unit Dil Fac Analyte Result Qualifier D Prepared Analyzed 1.0 Specific Conductance 1.0 umhos/cm 02/17/15 15:38 ND

Lab Sample ID: LCS 440-236854/4 Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 236854

Spike LCS LCS %Rec. Added Result Qualifie Unit %Rec Limits Specific Conductance 765 769 umhos/cm 101 90 - 110

Lab Sample ID: 720-62889-1 DU Client Sample ID: TS1-E-020615

Matrix: Water

Analysis Batch: 236854

DU DU RPD Sample Sample Analyte Result Qualifier Result Qualifier Unit RPD Limit Specific Conductance 1500 1510 5 umhos/cm

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 440-236115/2 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 236115

мв мв

Result Qualifier RL MDL Unit Dil Fac Analyte D Prepared Analyzed Total Suspended Solids 1.0 0.50 mg/L 02/12/15 16:03 ND

Lab Sample ID: LCS 440-236115/1 Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 236115

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits **Total Suspended Solids** 1000 991 ma/L 99 85 - 115

TestAmerica Pleasanton

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

# **QC Association Summary**

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

### Metals

Prep Batch: 182457

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-62889-1	TS1-E-020615	Total/NA	Water	200.8	
720-62889-1 DU	TS1-E-020615	Total/NA	Water	200.8	
720-62889-1 MS	TS1-E-020615	Total/NA	Water	200.8	
720_62889_1 MSD	TS1_F_020615	Total/NA	Water	200.8	

1					
720-62889-1 MS	TS1-E-020615	Total/NA	Water	200.8	
720-62889-1 MSD	TS1-E-020615	Total/NA	Water	200.8	
720-62889-2	SW-11-020615	Total/NA	Water	200.8	
720-62889-3	SW-12-020615	Total/NA	Water	200.8	
LCS 580-182457/15-A	Lab Control Sample	Total/NA	Water	200.8	
LCSD 580-182457/16-A	Lab Control Sample Dup	Total/NA	Water	200.8	
MB 580-182457/14-A	Method Blank	Total/NA	Water	200.8	
1					

Analysis Batch: 182582

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-62889-1	TS1-E-020615	Total/NA	Water	200.8	182457
720-62889-1 DU	TS1-E-020615	Total/NA	Water	200.8	182457
720-62889-1 MS	TS1-E-020615	Total/NA	Water	200.8	182457
720-62889-1 MSD	TS1-E-020615	Total/NA	Water	200.8	182457
720-62889-2	SW-11-020615	Total/NA	Water	200.8	182457
720-62889-3	SW-12-020615	Total/NA	Water	200.8	182457
LCS 580-182457/15-A	Lab Control Sample	Total/NA	Water	200.8	182457
LCSD 580-182457/16-A	Lab Control Sample Dup	Total/NA	Water	200.8	182457
MB 580-182457/14-A	Method Blank	Total/NA	Water	200.8	182457

## **General Chemistry**

Analysis Batch: 175496

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-62889-1	TS1-E-020615	Total/NA	Water	9040B	
720-62889-2	SW-11-020615	Total/NA	Water	9040B	
720-62889-3	SW-12-020615	Total/NA	Water	9040B	
LCS 720-175496/1	Lab Control Sample	Total/NA	Water	9040B	

Analysis Batch: 236115

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-62889-1	TS1-E-020615	Total/NA	Water	SM 2540D	
720-62889-2	SW-11-020615	Total/NA	Water	SM 2540D	
720-62889-3	SW-12-020615	Total/NA	Water	SM 2540D	
LCS 440-236115/1	Lab Control Sample	Total/NA	Water	SM 2540D	
MB 440-236115/2	Method Blank	Total/NA	Water	SM 2540D	

Analysis Batch: 236854

	,										
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch						
720-62889-1	TS1-E-020615	Total/NA	Water	SM 2510B	- <del></del>						
720-62889-1 DU	TS1-E-020615	Total/NA	Water	SM 2510B							
720-62889-2	SW-11-020615	Total/NA	Water	SM 2510B							
720-62889-3	SW-12-020615	Total/NA	Water	SM 2510B							
LCS 440-236854/4	Lab Control Sample	Total/NA	Water	SM 2510B							
MB 440-236854/3	Method Blank	Total/NA	Water	SM 2510B							

TestAmerica Pleasanton

TestAmerica Job ID: 720-62889-1

# **QC Association Summary**

Client: Weiss Associates

TestAmerica Job ID: 720-62889-1 Project/Site: LRT 2014-2015 Annual Stormwater Sampling

## **General Chemistry (Continued)**

Prep Batch: 275537

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-62889-1	TS1-E-020615	Total/NA	Water	1664A	_
720-62889-1 MS	TS1-E-020615	Total/NA	Water	1664A	
720-62889-1 MSD	TS1-E-020615	Total/NA	Water	1664A	
720-62889-2	SW-11-020615	Total/NA	Water	1664A	
720-62889-3	SW-12-020615	Total/NA	Water	1664A	
LCS 500-275537/2-A	Lab Control Sample	Total/NA	Water	1664A	
MB 500-275537/1-A	Method Blank	Total/NA	Water	1664A	

Analysis Batch: 275542

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-62889-1	TS1-E-020615	Total/NA	Water	1664A	275537
720-62889-1 MS	TS1-E-020615	Total/NA	Water	1664A	275537
720-62889-1 MSD	TS1-E-020615	Total/NA	Water	1664A	275537
720-62889-2	SW-11-020615	Total/NA	Water	1664A	275537
720-62889-3	SW-12-020615	Total/NA	Water	1664A	275537
LCS 500-275537/2-A	Lab Control Sample	Total/NA	Water	1664A	275537
MB 500-275537/1-A	Method Blank	Total/NA	Water	1664A	275537

#### Lab Chronicle

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

Lab Sample ID: 720-62889-1

TestAmerica Job ID: 720-62889-1

Matrix: Water

## Client Sample ID: TS1-E-020615

Date Collected: 02/06/15 13:50 Date Received: 02/09/15 18:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	200.8			182457	02/13/15 10:16	PAB	TAL SEA
Total/NA	Analysis	200.8		1	182582	02/13/15 14:48	FCW	TAL SEA
Total/NA	Prep	1664A			275537	02/11/15 20:49	SJS	TAL CHI
Total/NA	Analysis	1664A		1	275542	02/11/15 22:01	SJS	TAL CHI
Total/NA	Analysis	9040B		1	175496	02/09/15 22:42	EYT	TAL PLS
Total/NA	Analysis	SM 2510B		1	236854	02/17/15 15:38	NTN	TAL IRV
Total/NA	Analysis	SM 2540D		1	236115	02/12/15 16:03	NTN	TAL IRV

Client Sample ID: SW-11-020615

Date Collected: 02/06/15 14:13

Date Received: 02/09/15 18:00

Lab Sample ID: 720-62889-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	200.8			182457	02/13/15 10:16	PAB	TAL SEA
Total/NA	Analysis	200.8		1	182582	02/13/15 15:22	FCW	TAL SEA
Total/NA	Prep	1664A			275537	02/11/15 21:01	SJS	TAL CHI
Total/NA	Analysis	1664A		1	275542	02/11/15 22:09	SJS	TAL CHI
Total/NA	Analysis	9040B		1	175496	02/09/15 22:47	EYT	TAL PLS
Total/NA	Analysis	SM 2510B		10	236854	02/17/15 15:38	NTN	TAL IRV
Total/NA	Analysis	SM 2540D		1	236115	02/12/15 16:03	NTN	TAL IRV

Client Sample ID: SW-12-020615

Date Collected: 02/06/15 14:05

Date Received: 02/09/15 18:00

Lab Sample ID: 720-62889-3

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	200.8			182457	02/13/15 10:16	PAB	TAL SEA
Total/NA	Analysis	200.8		1	182582	02/13/15 15:26	FCW	TAL SEA
Total/NA	Prep	1664A			275537	02/11/15 21:05	SJS	TAL CHI
Total/NA	Analysis	1664A		1	275542	02/11/15 22:12	SJS	TAL CHI
Total/NA	Analysis	9040B		1	175496	02/09/15 22:50	EYT	TAL PLS
Total/NA	Analysis	SM 2510B		1	236854	02/17/15 15:38	NTN	TAL IRV
Total/NA	Analysis	SM 2540D		1	236115	02/12/15 16:03	NTN	TAL IRV

#### Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

# **Certification Summary**

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

TestAmerica Job ID: 720-62889-1

#### Laboratory: TestAmerica Pleasanton

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Da
California	State Prog	ram	9	2496	01-31-16
Analysis Method	Prep Method	Matrix	Analyt	ta	

#### Laboratory: TestAmerica Chicago

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alabama	State Program	4	40461	04-30-15
California	State Program	9	2903	04-30-15
Georgia	State Program	4	N/A	04-30-15
Georgia	State Program	4	939	04-30-15
Hawaii	State Program	9	N/A	04-30-15
Illinois	NELAP	5	100201	04-30-15
Indiana	State Program	5	C-IL-02	04-30-15
Iowa	State Program	7	82	05-01-16
Kansas	NELAP	7	E-10161	03-31-15 *
Kentucky (UST)	State Program	4	66	04-30-15
Kentucky (WW)	State Program	4	KY90023	12-31-15
Massachusetts	State Program	1	M-IL035	06-30-15
Mississippi	State Program	4	N/A	04-30-15
New York	NELAP	2	IL00035	03-31-15
North Carolina (WW/SW)	State Program	4	291	12-31-15
North Dakota	State Program	8	R-194	04-30-15
Oklahoma	State Program	6	8908	08-31-15
South Carolina	State Program	4	77001	04-30-15
USDA	Federal		P330-15-00038	02-11-18
Wisconsin	State Program	5	999580010	08-31-15
Wyoming	State Program	8	8TMS-Q	04-30-15

## Laboratory: TestAmerica Irvine

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	State Program	9	2706	06-30-16

#### Laboratory: TestAmerica Seattle

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-022	03-04-15
California	State Program	9	2901	01-31-15 *
L-A-B	DoD ELAP		L2236	01-19-16
L-A-B	ISO/IEC 17025		L2236	01-19-16
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-06-15
US Fish & Wildlife	Federal		LE192332-0	02-28-16
USDA	Federal		P330-11-00222	04-08-17
Washington	State Program	10	C553	02-17-16 *

^{*} Certification renewal pending - certification considered valid.

## **Method Summary**

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

TestAmerica Job ID: 720-62889-1

Method	Method Description	Protocol	Laboratory
200.8	Metals (ICP/MS)	EPA	TAL SEA
1664A	HEM and SGT-HEM	1664A	TAL CHI
9040B	рН	SW846	TAL PLS
SM 2510B	Conductivity, Specific Conductance	SM	TAL IRV
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL IRV

#### Protocol References:

1664A = EPA-821-98-002

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

# **Sample Summary**

Client: Weiss Associates

Project/Site: LRT 2014-2015 Annual Stormwater Sampling

TestAmerica Job ID: 720-62889-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-62889-1	TS1-E-020615	Water	02/06/15 13:50	02/09/15 18:00
720-62889-2	SW-11-020615	Water	02/06/15 14:13	02/09/15 18:00
720-62889-3	SW-12-020615	Water	02/06/15 14:05	02/09/15 18:00

ED_000946_Recollect_00330313-00232

# 120-62889

Chain	of	Custody	Record

TestAmerica 1220 Quarry Lane Pleasanton, CA 94566 Phone: 925-484-1919 ext.137 Please send analytic results, electronic deliverables and the original chain-of-custody form to:

labresults@weiss.com

mec@weiss.com sab@weiss.com

INST	RUCTIONS	FORI	AB PER	SONNEL:
------	----------	------	--------	---------

GeoTracker EDF required? 

Ves 

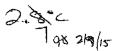
No

Equis 4-file EDWEDD required? 

Yes 

No

Specify analytic/prep method and detection limit in report.


Notify us of any anomalous peaks in GC or other scans. Call immediately with any questions or problems.

159238

	Client Contact	Protocol ID/path: J'Levin Richmond\035_Sampling													COC Number:							
Weiss Asso	ciates		શું.	इ			I	1					Ι	Τ.	T	T	1					
2200 Powel	l Street, Suite 925	Sampled by:	NEL			4	(Q)	HE HE	Zn											•		
Emeryville,	, CA 94608	Sample date(s):	4	(Corolacy (SM 2540D)) 1664A SGT-HEM 1, Fe, Ni, Pb, Zn S)										Page of	<u> </u>							
(510) 450-6	000 Phone	Analysi	s Turnaro	and Time	):	3	(S)	64A	E, Z													
(510) 547-5	043 FAX					12	olid	A 16	AS)		111 77	0-628		nain o	Halling F.C. usi	IIII II/II. fody					SDG number:	, 1
Job Name:	LRT 2014-2015 Annual Storm Water Sampling		Standard	<u></u>	-	( <b>Rei (MA)</b>	ded S	(EP.	CP-N				.00 0,	ian i o	Cus	louy						
Address:	Levin Richmond Terminal, 402 Wright Avenue, Richmond, CA 94804	(Sp	ecify Days or l	Hoors)		anlyne (Mediod ID). EPA 9040B) /cond.	Total Suspended Solids (SM 2540D)	Grease (EPA 1664A SGT-HEM)	Metals- Al,Cu, Fe, Ni, Pb, 200.8 ICP-MS)					I								
Lab ID	Sample Identification	Sample Date	Sample Time	Sample Matrix	# of Cont.	PH (EPA	Total S	Oil &	Total ?												Sample Specific Note	1
	TS1-E- 020615	2/4/15	1350	W	8		V	V	V												MS/MM) for Oice	1 + 1 5 et al 5
	SW-3-																	-				
	SW-4/5/6/7-																			<b></b>		· ·
																			<u> </u>			<u> </u>
	SW-4/5/6/7-DUP-															-						7
	SW-11-020615	2/6/15	1413	V	5	<b>V</b>	V	V	V													¢
	SW-12-020615	2/6/15	1405	W	5	√	V	V	V													<u> </u>
	SHEET-1-																	ļ	-			
	SHEET-2-																					
				-													<del> </del>		╁──			
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			***************************************			-										<u></u>	ļ	ļ	ļ		
																!						ļ
				Field	Filtered ()	():																
	Preservation Used: 1=Ice, 2=HCl; 3=H ₂ SO ₄ ; 4=H	NO3; 5=NaOH; 6= Oth	er			1	1	1, 2	1, 4	1	1	1	1	1	1	1	1	1	1	1		
Special Ins	tructions/QC Requirements & Comments:	Level II Report. Re	port with re	porting lin	nit and met	hod dete	ction	limit.	Analy	ze an	d repo	rt onl	y the 1	netals	liste	d abo	ve (Al	, Cu,	Fe, Ni	, Pb,	and Zn).	
																						l
				J																		ĺ
Relinquished	by:	Company:		Date/Time		Received	by;								Compa	my.					Date/Time·	
1/1	Mary Camillas	War		29/15	1030	1		1/2	1	$\sim$	>			0			A				2-9-15 1	Ø39
Relinquished	· ~ // -	Company.	_	Date/Time		Received	by: A							1	Compa	my ]	RVO				Date/Time   SU	
Relinquished	0000	[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]		2-9-15 Date/Time	1800	V	MY,	سميا						0	C	ا ا	C					
remdinanco		Company		L/ate/ i imė		Received	qy:							_	Compa	my.					Date/Timel	ļ

🗵 = Samples released to a secured, locked area.

= Samples received from a secured, locked area



Client: Weiss Associates Job Number: 720-62889-1

Login Number: 62889 List Source: TestAmerica Pleasanton

List Number: 1

Creator: Gonzales, Justinn

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	False	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Client: Weiss Associates Job Number: 720-62889-1

List Source: TestAmerica Chicago
List Number: 2
List Creation: 02/11/15 11:47 AM

Creator: Kelsey, Shawn M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

Client: Weiss Associates Job Number: 720-62889-1

List Source: TestAmerica Irvine
List Number: 4
List Creation: 02/12/15 04:36 PM

Creator: Chy, Jonathan

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Client: Weiss Associates Job Number: 720-62889-1

List Source: TestAmerica Seattle
List Number: 3
List Creation: 02/11/15 12:08 PM

Creator: Abello, Andrea N

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	IR#1 = 15.0 / 14.8
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	



#### ELAP#2647

Client:

**Scott Bourne** 

sab@weiss.com

Weiss Associates 2200 Powell Street, Suite 925 Emeryville, CA94608 Phone:(510) 450-6000 Fax: (510) 547-5043 labresults@weiss.com mec@weiss.com Work Order: 4435

Project name:LRT 2014-2015 Annual

Storm Water Sampling

Lab ID#:4435

Sampling date: 2/06/15

Sample received date:2/11/15 @ 9:35

Analysis Date: 2/11/15 Reporting Date: 2/18/15

Matrix: Water Page 1 of 4

#### **Case Narrative**

This report presents the results of the analysis of the Water sample received on 2/11/2015 and assigned the listed Cel Analytical work order number 4435 (CelA 4435).

Analysis were conducted according to StormKlear HaloSource HS-SOP-5054-02 methods validated in-house. All QA/QC requirements were met and no anomalies associated with the analysis of these sample(s) were observed.

Reviewed by:

Yeggie Dearborn, Ph.D. Laboratory Director

Jeggie Z Daba



#### **Scott Bourne**

Weiss Associates 2200 Powell Street, Suite 925 Emeryville, CA94608 Phone:(510) 450-6000 Fax: (510) 547-5043

labresults@weiss.com mec@weiss.com sab@weiss.com Project name:LRT 2014-2015 Annual Storm Water Sampling

Lab ID#:4435

Sampling date:2/06/15 Sample received date:2/11/15 @ 9:35

Analysis Date: 2/11/15 Reporting Date: 2/18/15

Matrix: Water Page 2 of 4

## **Laboratory Report**

Qualitative/Colorimetric Analysis

#### **Residual Chitosan**

		Results
Lab ID	Sample ID-Description/Date & Time	Risidual Chitosan (mg/L)
4435-01	TS1-E-020615 2/6/15 13:50	Non-Detected

Parameter	Laboratory Reporting Limit	Method
Residual Chitosan	0.1mg/L	HS-SOP-5054-02

Reveiwed by: Yeggie Dearborn Ph.D.

Jeggie Z Daba

Lab Director

82 Mary Street Suite 2, San Francisco CA 94103 Tel: (415) 882-1690 Fax: (415) 882-1685



#### **Scott Bourne**

Weiss Associates 2200 Powell Street, Suite 925 Emeryville, CA94608 Phone:(510) 450-6000 Fax: (510) 547-5043

labresults@weiss.com mec@weiss.com sab@weiss.com Project name:LRT 2014-2015 Annual Storm Water Sampling

Lab ID#:4435

Sampling date:2/06/15 Sample received date:2/11/15 @ 9:35

Analysis Date: 2/11/15 Reporting Date: 2/18/15

Matrix: Water Page 3 of 4

## **Quality Control Report**

#### **Residual Chitosan**

Method: HS-SOP-5054-02 Reporting Limit: 0.1 mg/L Quality control analysis

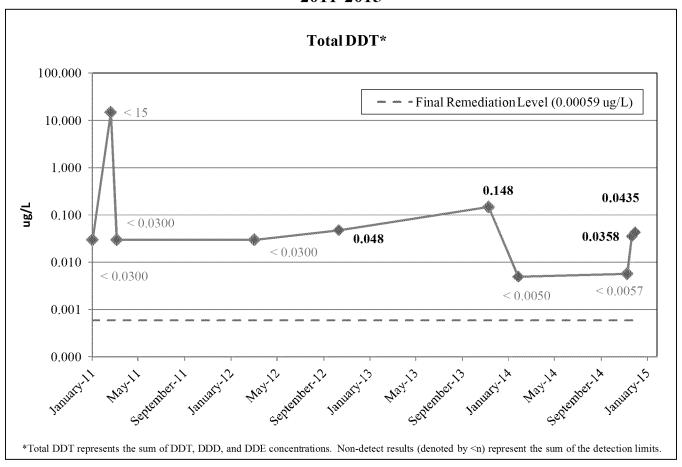
Matrix	Sample Results ppm	
Control Sample *	Detected ≥0.1 mg/L	
Blank	Non-Detected	

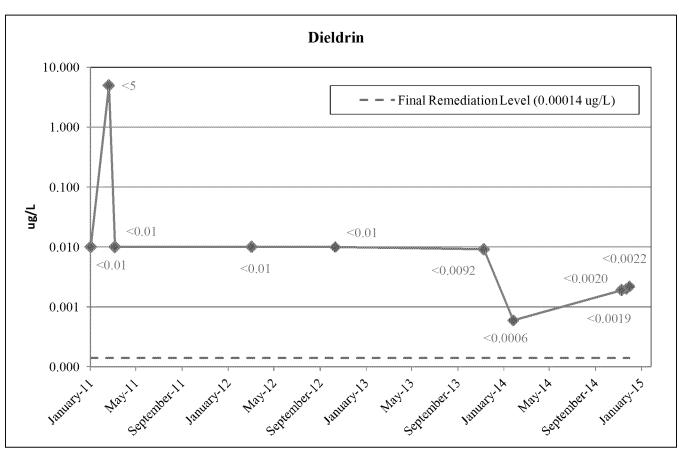
^{*}Neat Product used as coagulant and diluted to achieve 0.1 mg/L

Reviewed By: Yeggie Dearborn, Ph.D. Laboratory Director

Jeggie Z Daba

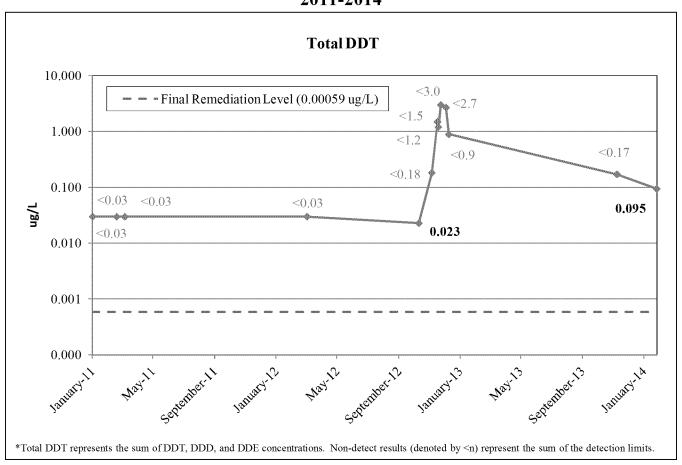
82 Mary Street Suite 2, San Francisco, CA 94103 Tel:(415) 882-1690, Fax: (415) 882-1685

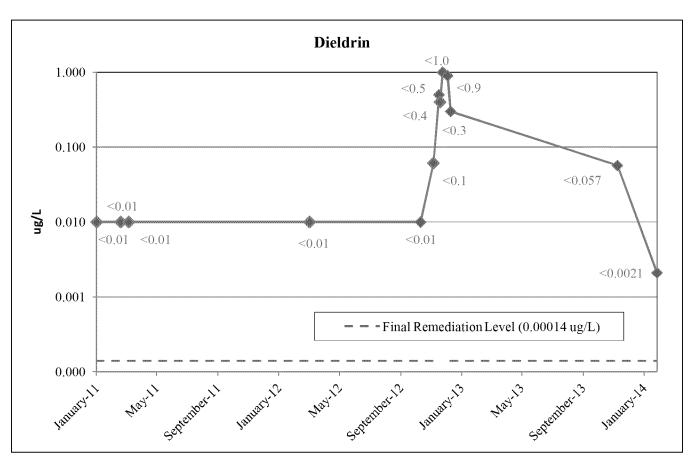

183 - Samples released in a secured, looked area.	Reinspelhes 5 (	Calmonial St.		Special Instructions/OC Requirements & Comments:	Presservation Used: 1* Icc, 2* HCl; 3* H,SO, 4*HNO,; 5*NaOH; 5* Other						TS1-E- 07:0615	Sample Identification	Address: 10 Wile Avenue Habitate CA 94861	Toll Yang 12 214 2015 Avent Story Story Story	(50) \$47.904	(810) 4% 400		220 Type Street, Suite 225			Nan Francisco, (.A. 94103 Phone: (418) 882-1690	CEL Analytical 82 Mary Street, Suite #2	Chain of Custody Record
		Š		its: Level II Report, Report with reporting limit and method detection limit, <del>たっぱい and appart only the</del> アクリカリカ (Hala Source 1 Jacoffee) ビーク・1 ではして、Sarrolte の								San Date				<b>***</b>			3			original chains of endody form to:  (above units give endody form to:	
				PST with reporting in							35					Analysis Turnsround Time:	S		126-2026.01 Task 5.1.3	Scott Bourse			
	8					Field Filtered (N):													-				
					**						<b>X</b>	The second	aalyte	HANNAHAR.	enone contra	) ID	)			Tana In San		Equity 4-file EDWEDD required? Specify analytic perspectivel and date	
• - Series and from a company we have																						Equits, 4-file EDWEDD required 1 10. Yes. 12 N Specify analytic peep method and distertion limit to report	INSTRUCTIONS FOR LAR PURSONNEL.
				_O∳														inganishing	***************************************				
														and delegation of the second									
	K		1								-												
		21111										Sample Specific Notes:			SDC parasteers								




# **APPENDIX C**

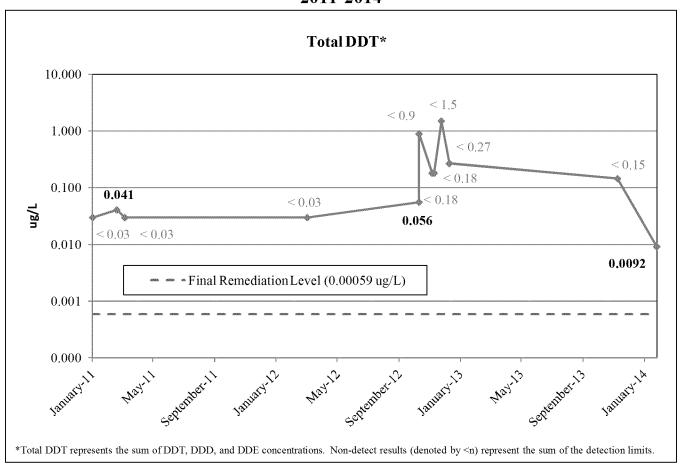
STORM WATER PESTICIDE CONCENTRATION TREND CHARTS FOR DDT AND DIELDRIN

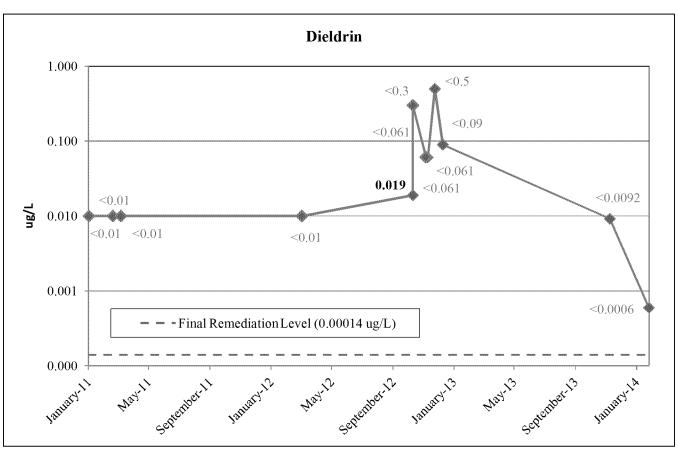

# SW-3 Pesticide Concentration Trend Charts 2011-2015





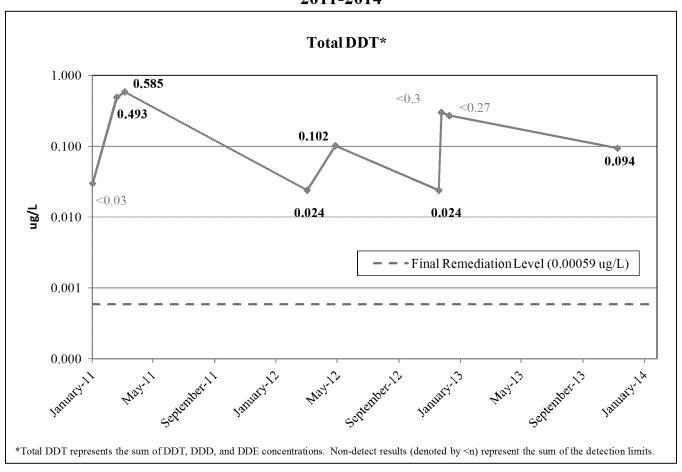

Note: Data prior to February 2013 represents samples collected by previous consultants.

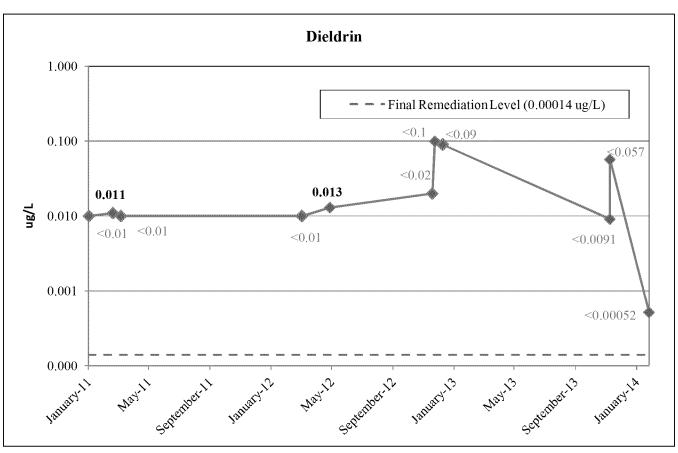

# SW-4 Pesticide Concentration Trend Charts 2011-2014





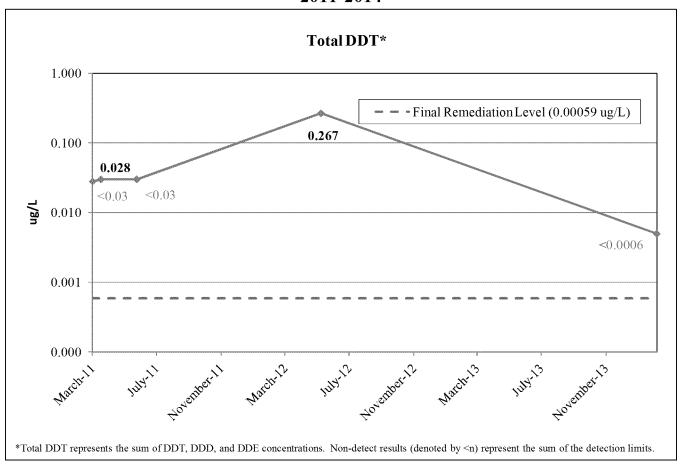

Note: Data prior to February 2013 represents samples collected by previous consultants.

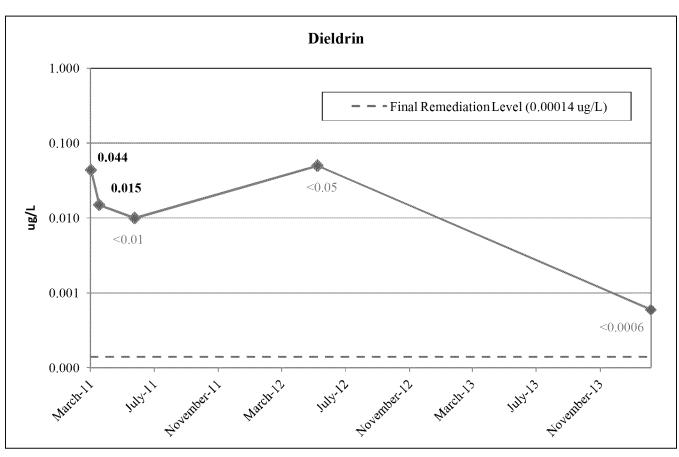

# SW-5 Pesticide Concentration Trend Charts 2011-2014






Note:
Data prior to February 2013 represents samples collected by previous consultants.

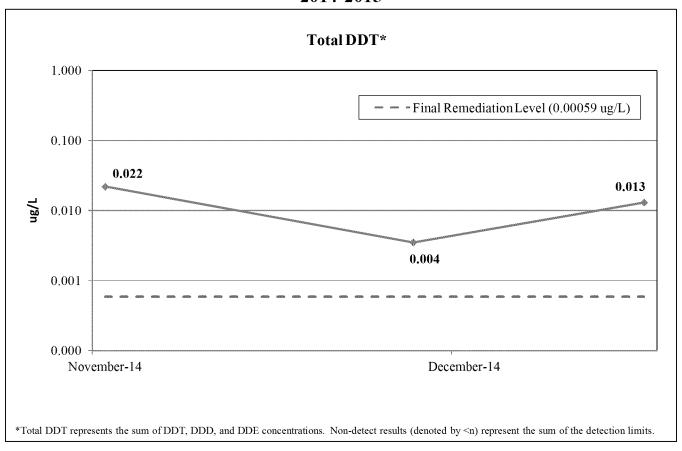

# SW-6 Pesticide Concentration Trend Charts 2011-2014

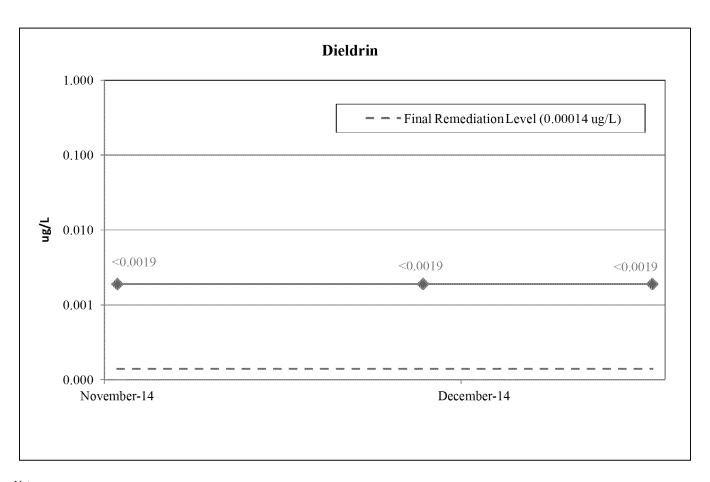





Note:
Data prior to February 2013 represents samples collected by previous consultants.

# SW-7 Pesticide Concentration Trend Charts 2011-2014




Note:

Data prior to February 2013 represents samples collected by previous consultants.

# SW-4 through SW-7 Pesticide Concentration Trend Charts 2014-2015





Note:
Data prior to February 2013 represents samples collected by previous consultants.



## APPENDIX D

UPLAND CAPPING SYSTEM INSPECTION FORM

## Former United Heckathorn Superfund Site Upland Capping System Inspection Form Levin Richmond Terminal, 402 Wright Avenue, Richmond, California

I. General I	CARREST CONTRACTOR	CONTRACTOR AND ADDRESS OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P	HITCH IN THE PROPERTY HAS A STATE OF								
Site:					•	und Site	, Inspectors:				Brian Bandy
				nd Termir			Organization		s Asso		
Address	S: 4	402 W	ight Ave	enue, Ric	hmond, C	A	Date and time	of inspe	ction:	June	15, 2015; 10:15
II Unland (	A ro	- C	acroto	Can C	Prayol Co	NOT O	nd Drainaga	System	Obse	motio	No.
							nd Drainage or anv exposure				nponent of the capping system.
North Main T				*							11 3 7
		,	•					Yes	No	N/A	Comments
Are conc	crete	e cap s	urfaces	in adequ	uate condit	ion to		Х			Minor cracks noted.
promote	e eff	ective	ness of t	the cap?							
Are grave	el c	over s	urfaces	in adequ	ate conditi	on to		Х			
				the cap?							
ls storm	wat	er dra	nage int	frastructi	ıre in adeq	uate con	ndition to	Х			
					il to runoff?		idition to				
F				.,							
Ara aarra	a ativ	ın anti		iiro d'O							
Are corre	ecu	ve acu	ons requ	aireu :					X		Continued observation recommended Sealing of pavement cracks and
											joints noted in some locations.
A., .								_			Jenne 110100 III 001110 10001101101
Attach a	pno	otogra	on or are	eas requi	ring correc	tive action	on.			<u>  X</u>	
Describe	e an	v rece	nt repair	s/mainte	nance:						
		,									
No recer	nt c	orrectiv	<u>re actior</u>	ns to con	crete cap c	or gravel	cover noted in	SW-3 area	<u>3.</u>		
Describe	есо	ndition	s and lo	cations o	of the capp	ing syste	em which requir	e attentior	1:		
							ion and a poten	tial for exp	osure	of the u	nderlying
<u>subgrade</u>	e w	ere ide	ntifed in	this area	a. See pho	otos 1-5.					
Describe	есо	rrectiv	e actions	s require	d and their	date(s)	of implementati	on:			
								_			
<u>Continue</u>	e to	monite	or for mi	nor crack	s to see if	their cor	nditions worsen	or if they o	<u>continu</u>	e to pro	<u>pagate</u> .
Signature:		1	1		1. The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se						
Signature:	2	$\mathcal{M}$	Pom	Me							
J											

Date: 6/15/2015 1 of 5

rth Main Terminal/United Heckathorn (SW-4)		
ν	Yes No N/A	Comments
Are concrete cap surfaces in adequate condition to promote effectiveness of the cap?	X	Minor cracks noted.
Are gravel cover surfaces in adequate condition to promote effectiveness of the cap?	X	Additional gravel needed in area identified in photo 6.
Is storm water drainage infrastructure in adequate condition to prevent exposure of underlying soil to runoff?	X	
Are corrective actions required?	x	Additional gravel needed in area identified in photo 6.
Attach a photograph of areas requiring corrective action.	X	Photograph 6, Appendix A
Describe any recent repairs/maintenance:		
No recent corrective actions to concrete cap or gravel cover noted in S	W-4 area	
Describe conditions and locations of the capping system which require  Area of gravel cover in need of additional gravel (photo 6).	attention:	
Describe corrective actions required and their date(s) of implementation	n:	
Continue to monitor for minor cracks to see if their conditions worsen of	r if they continue to prop	pagate (photo 8).
Add additional gravel to the gravel cover area identified in photo 6.		

Signature: Sunt bowne

Date: 6/15/2015 2 of 5

orth Main Terminal/United Heckathorn (SW-5)		
	Yes No N/A	Comments
Are concrete cap surfaces in adequate condition to promote effectiveness of the cap?	X	Minor cracks noted.
Are gravel cover surfaces in adequate condition to promote effectiveness of the cap?	X	Additional gravel needed in area identified in photo 11.
Is storm water drainage infrastructure in adequate condition to prevent exposure of underlying soil to runoff?	X	
Are corrective actions required?	X	Additional gravel needed in area identified in photo 10.
Attach a photograph of areas requiring corrective action.	x	Photograph 10, Appendix A
Describe any recent repairs/maintenance:		
Gravel was added in July 2014 in areas of thinning and exposed geotes the 2013-2014 Annual Report.	ktile in the SW-5 area, a	ns recommended in
Describe conditions and locations of the capping system which require  Area of gravel cover in need of additional gravel (photo 10).	attention:	
Describe corrective actions required and their date(s) of implementation		
Continue to monitor for minor cracks to see if their conditions worsen of Add additional gravel to the gravel cover area identified in photo 10.	rif they continue to prop	pagate (photos 9 and 11).

Signature:

Date: 6/15/2015 3 of 5

	Yes No N/A Comments
	res No NA Comments
Are concrete cap surfaces in adequate condition to promote effectiveness of the cap?	X Areas of deteriorated concrete ar minor cracks noted.
Are gravel cover surfaces in adequate condition to promote effectiveness of the cap?	x
Is storm water drainage infrastructure in adequate condition to prevent exposure of underlying soil to runoff?	X
Are corrective actions required?	X Sealing of broken areas in concrete cap recommended.
Attach a photograph of areas requiring corrective action.	X Photographs 17/18, Appendix A
Describe any recent repairs/maintenance:	
No recent corrective actions to concrete cap or gravel cover noted in	<u>n SW-6 area.</u>
Describe conditions and locations of the capping system which requ	ire attention:
Describe conditions and locations of the capping system which required monitoring of small areas of deteriorating concrete recommendations.	
Continued monitoring of small areas of deteriorating concrete recom	nmended, especially south of inlet 6-DI-15/north of 5-DI-12
Describe corrective actions required and their date(s) of implementa  Continue to monitor for minor cracks to see if their conditions worse.	nmended, especially south of inlet 6-DI-15/north of 5-DI-12 ntion: n or if they continue to propagate (photos 12, 14, 15, 16).
Continued monitoring of small areas of deteriorating concrete recom-	nmended, especially south of inlet 6-DI-15/north of 5-DI-12 ntion: n or if they continue to propagate (photos 12, 14, 15, 16).
Continued monitoring of small areas of deteriorating concrete recom-	nmended, especially south of inlet 6-DI-15/north of 5-DI-12 ntion: n or if they continue to propagate (photos 12, 14, 15, 16).
Continued monitoring of small areas of deteriorating concrete recommendations.  Describe corrective actions required and their date(s) of implementations.  Continue to monitor for minor cracks to see if their conditions worse.	nmended, especially south of inlet 6-DI-15/north of 5-DI-12 ntion: n or if they continue to propagate (photos 12, 14, 15, 16).
Continued monitoring of small areas of deteriorating concrete recom-	nmended, especially south of inlet 6-DI-15/north of 5-DI-12 ntion: n or if they continue to propagate (photos 12, 14, 15, 16).
Continued monitoring of small areas of deteriorating concrete recom-	nmended, especially south of inlet 6-DI-15/north of 5-DI-12 ntion: n or if they continue to propagate (photos 12, 14, 15, 16).

Date: 6/15/2015 4 of 5

	Yes No N/A Comments
Are concrete cap surfaces in adequate condition to promote effectiveness of the cap?	X Minor cracks noted.
Are gravel cover surfaces in adequate condition to promote effectiveness of the cap?	
Is storm water drainage infrastructure in adequate condition to prevent exposure of underlying soil to runoff?	X
Are corrective actions required?	
Attach a photograph of areas requiring corrective action.	
Describe any recent repairs/maintenance:	
No recent corrective actions to concrete cap or gravel cover noted	d in SW-7 area.
Describe conditions and locations of the capping system which re	quire attention:
Describe conditions and locations of the capping system which re  Minor cracks observed in the SW-7 concrete cap knoll (photos 13)	
Minor cracks observed in the SW-7 concrete cap knoll (photos 13	and 14).
	e and 14).
Minor cracks observed in the SW-7 concrete cap knoll (photos 13  Describe corrective actions required and their date(s) of implement	e and 14).
Minor cracks observed in the SW-7 concrete cap knoll (photos 13  Describe corrective actions required and their date(s) of implement	e and 14).
Minor cracks observed in the SW-7 concrete cap knoll (photos 13  Describe corrective actions required and their date(s) of implement	e and 14).

Date: 6/15/2015 5 of 5